TMG Library

Programmer’s Manual

Active Silicon Limited

v4.0.4

TMG Programmer’s Manual v4.0.4

Disclaimer

While every precaution has been taken in the preparation of this manual, Active Silicon Ltd assumes no
responsibility for errors or omissions. Active Silicon Ltd reserves the right to change the specification of the product
described within this manual and the manual itself at any time without notice and without obligation of Active
Silicon Ltd to notify any person of such revisions or changes.

Copyright Notice

Copyright [11992-2002 Active Silicon Ltd. All rightsreserved. This document may not in whole or in part, be
reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or transated into
any language or computer language without the prior written consent of Active Silicon Ltd.

Trademarks

“Apple’, “Macintosh” and “MacOS’ are trademarks of Apple Computer Inc. “AMCC” isaregistered trademark of
Applied Micro Circuits Corporation. “Dallas’ is aregistered trademark of Dallas Semiconductor Corporation.
“Dell” isaregistered trademark of Dell Computer Corporation. “Flash Graphics’ and “X-32VM” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks’ and “ CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS’, “Windows’, “Windows NT”, “Windows 95", “Windows 98",
“Win32", “Visual C++" are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is aregistered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris’
areregistered trademarks of Sun MicrosystemsInc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks’ and “Tornado” are registered trademarks of Wind River
SystemsInc. “Xilinx” isaregistered trademark of Xilinx.

All other trademarks and registered trademarks are the property of their respective owners.

Part I nformation

Part Number: TMG-MAN-LIB
Versionv4.0.4 January 2002
Printed in the United Kingdom.

Contact Details

Support www.activesilicon.co.uk Head Office:

. " Active Silicon Limited.
support@acnveﬂllcon.co.uk Brunel Science Park, Kingston Lane

Uxbridge, Middlesex, UB8 3PQ, UK

Tel +44 (0) 1895234254
Fax +44 (0) 1895 230131

http://www.active-silicon.com/
http://www.active-silicon.com/
mailto:support@active-silicon.com

TMG Programmer’s Manual v4.0.4

TMG Programmer’s Manual v4.0.4 i

Table of Contents

[T gLl [F ot (ol FO TSSOSO SR PT SR PTS 1
1000000 o ST U U UR PP 2
o YA (1 (1 = TSRO 5
PIXE] FOTMNIBES ...ttt h bbb bbbt R bR Rt AR e R R e e e Rt b e b e st e b e b e st e b et et eb e b e st nb e r et e 6
ETTON REIUINS. ... v b et s e s h R b b e e e e s R e s R e e b e s Rt e e e e e b e e e sr e bt b e b e e n s 8
OPErAtiNG SYSLEIM ISSUESeevirieeiieeerterte sttt s et et e te st e s besbe et sbe s st eaeeaeeas e beseeebesaeeaeeae e e anbeseeeheaaeaneeseeabesaesaesaeeneanbeseans 10
Image Display FUNCLIONS @Nd EXAMPIES..........ooiiiiiiieeee ettt s e b bbbt see e 12
S a0l o L= N oo [T o SRRSO 20
FUNCEION LISE ..ttt b b e st b8 e R R e s Rt e e b e e bR e e bt e et e bt e e e e bt e e e enenr e e ens 28
TMG_BAY_RGB24 10 RGGB32........cocututuiiiiririeieteieteieeseseseses sttt e et se e e s b be b se st e sesesessebebebasasenesensasssssesesesasas 33
TMG_BAY_RGGB32_map_to Y8, TMG_BAY_RGGB32 map 10 RGB24........ccccceoiiirrriririieeneneeeieieeeees 34
TMG_BAY_RGGB32_to BGRX32, TMG_BAY_RGGB32 t0 RGBI16........ccoruririreririeeneririnieieieieee e 35
LY LT O G o= 1= (=SS 37
TMG_CK_CHIOMEKEY ...ttt sttt a e bt he e he e e e b et e see e b e e Rt e s e e e e b e se e e anbeseeebesbesaeeneensanbeseens 39
LI LT O S o == (PSP 40
I LT o === {0 OSSPSR 41
TMG_CK_destroy UV _10 NUE LUT ..ottt bt eae et be b s besaesne e e e nbe e 42
TMG_CK_generate UV 10 NUE LUT ..ottt bbb b b saesae e e e nbenee s 43
TIMG_CK_GBL COMPIONENTE.......eueieueieteesteasteeteeseseeseesseesaeesseebeeaseassasseesseeabeeabeaaseeaeesaseeaeeabeanbeanbeemeesaeesbeesbeesseaseennesans 44
TIMG_CK_QBL PAIAITIELELeiteetieieeieriee st e et e ettt et e et e ebe e bt e beeabesaeesbeesbeeabeeee e e e saeesaeeabeaabeenbeeabesaeesaeesaeesaeenseenneenns 45
TMG_CK_get_YUV_values, TMG_CK_get YUV_ValUES RGB.......cccccururieiririeieeeri st 46
TIMG_CK_USEL PAIBITIELET ... eeteete ettt sttt ettt e et e bt e bt e b e eabeeaeesb e e sbe e abe e e e e aeesaeeeaeeabeaabeeabeeabesmeesanesheesaeenneanneeans 47
TIMIG_CIMEI_COPY ..ueeueeueeiueanteeateaureeutesteesueasseesseease e st aaeeeaeeeheaabe e beeabeeaseeaeesaeeeae e eaeeEe e bt em b e eabeebeenbeenbenaeesanesheesaeenneanneeans 48
TIMG_CIMEP_JENEIELE.eceeieteeteete et eete et et e bt e bt e ate et e eaeeebe e bt e beeabeeaeesheesheeebe e be e e e eaeeeReeaReanbeambeeabesaeesaeesaeesaeenneanneanns 49
TMG_CIMEP_JEL OCCUITEICESeuveeueeeueerteeteeasesaseaessaeesseasseastaaseasseaseasseabeaasesasesaeesaeesaeaaseaaseanseansesaeesaeesaeesaeenseanneenns 50
TMG_CMaP B RGB_COIOUF ...ttt sttt ettt b et bt e b e s aeese e e e besbesbesaesbesbesbeeaesae e e enbeseens 51
TMG_CMaP_fiNA_CIOSESE COIOUc.eiieiitiieeie ettt ettt bt b et ae e e et e saeebeseesbesbesbesaeenee e enbeseens 52
B (e = T o= Vs o= = SRRSO 53
TMG_CMEP._SEL COIOUF ..ttt ettt ettt bt bt he et e e se e b e aeebe e Rt e m e e meesEeebe s ae e embeseeehesbesaeeneeneanbeseens 54
TMG_CMEP_SEL RGB _COIOUF ...ttt ettt bbbt b a e e e e b e sbe e b e s aesbesbesbeeaeenee e enbeseens 55
BB\ T el n 0= oI = Y 0L T OO PP USRS 56
TMG_digplay DOX_Fill [DOST]eecueiuiiieieeierie ettt ettt e h et eeee e e besbesbesbe e st eae e e enbesbesbesbesaeeneeneanbeseens 58
TMG _display _clear [X WINAOWS, DOS]cc.coiiiiiriiieiierie ettt e e et ae b e esseseebesbesaesbesnesseeneanseseens 59
TMG_digplay CMEP [DOS]eeeiieiiieiieeeieere ettt ettt e s besae e ae s it e e eaeese e besbesbeebe e st eae e e anbeseesbesbesaeaneeneanbeseeas 60
TMG _display_cmap _install [X WINAOWS, DOS]cooiiiiiiirienieeieeeeie et se e e e b s sae e e eee e 61

LI LI [o = Y == (=SSR 62

TMG Programmer’s Manual v4.0.4 ii

LI LT o 11 o] = Y0 == 1 (0SSR 63
TMG_display_direct W3L [WINAOWS 3. 1] ...uecueeeeieieisieseeeeeeeneesiestestesseeseeeeseessesressesseesaeseessessessesseeseesessssnseseessensenns 64
TMG_display _draw _tEXE [DOS]occveoiereririeieseseseeee e e seeste s e sre s e e eeseestesaestesseeseesee s ensesseeseeneeneeseessessessennnens 67
Y LT o 1 o] = Yo = S - 1S 68
TMG_display_get hWNA [WINAOWS]......cceeierierereie s eeeseesee st esse e seestesneeseeseensensessessesneesessensesesssessenns 69
TMG_display_get paint NDC [WINGOWS]ccueiuiiiiiieiereeesesiesiesesseeeeieseeste e ssesseseensessessessessessesseessessessessessesnnnns 70
LY LT o 1 o = YA o = Al 0= 1= (= (S 71
LI Lo 11 o] = 1Yo = S | S 72
LI LT o 11 o] = Y1 7= o (=SS 73
QLI LT 1= o] = 1Y 1 S 75
TMG_display print_ DIB [WINOWS]ccceueierrreiieseseeeereesiese st s e eeesee e seestesseesaeseessesseseessesseesessssnsesesssessenns 79
I LT o 1 o] = Y= = A - S 81
TMG_display _Set fONt [DOS]cceeeiierieriseseeeeeee e ste st se e e e saeteseesbesseeseeseess e teseestessesseeseeneenseseensessessennnnns 82
TMG_display_set hWNA [WINAOWS]ooueeieiesise st e st e et ese e e seseestesneeneeeenseseessensnens 83
LY Lo 1 o = YA = Al 107= = S Y72 1 S 84
TMG_display_set paint hDC [WINAOWS]ccueiiiiiecieecresrseste s eeeeste st sae e enae e saessesresse s e eseessessessessennnnns 85
LY LT o 1 o = YA = Al 0 =0 S 86
LI LT o 1= o] = Y= = S S 88
TMG_display et Xid [X WINAOWS]ceeveiieriiriesieseseeeeseseesesiesresseseeseessessessesressesseessesssssesssssessessessessssnsesssssessenns 90
QLI LT = oY o = o S 91
LI LT = oY =2 92
LI LT = oY 11075 = S 93
LY LT = o I = Lo (o r= S] o1 S 94
QLI LT T 7= o ST 1o <SPS 96
LY LT = o S Iwe gLV T o = 1 o 97
TMG _image CONV_LUT gENEIBEE.ueceeeeeeesiesie s ste st e e e see st e s e s e ste e ese e e e e e teseestesaeeseeseensenseseetesneeseesenteseesrenseens 98
LY LT 7= o (=T e gLV T N Vo o S 100
LT = o ST e gLV T = Y S 102
QLI LT T 7= o ST 0 V7= 103
LI LT T 7= o ST o o)/ 108
LI LT T 7= o ST (== (= 110
QLI LT T 7= o ST L= (o) 111
TMG_image find_file fOrMAL.......ccveeeeeeces e e sae st s re e e s e e e e sreerenneeneenes 113
LY LT T 7= o SIS - - VS 114
LI LT T 7= o ST L= A1 =1 115
TMG_image get_infilename, TMG_image get OUtFIlENaME........cccevviiiere e e 116
Y LTz o ST L= A 0= = 1101 (= S 117

QLI LT T 7= o = = S o S 118

TMG Programmer’s Manual v4.0.4 iii

LI LT T 7= o =T E T o) oL SR 120
L LT 0= o ST 107 1o o R 1 TS 121
LI LT T 7= o ST 110/ = S 122
LI LT T 7= o S = [124
LI LT T 107= o ST = A - S 126
TMG_image set_infilename, TMG_image Set OULfilENAMEccveiee e s 128
L LT T 0= o SIS = Al o= =011 U= (S 129
LI LT T 7= o ST = S oL S 131
LI LT T 7= o =1 (=S 133
I (0] o PSS 135
LI LT L=t o Al = o] 136
TIVIG_IP IO BX3 oooeeoeeeeeeeeee e eeee e eeee e e s s eseeeseseseeeseseseee s seseseseee s ee e se s ee s se s eeeeeeseseseeeseeeseseseneseneneneeees 137
TMG_IP_QENEIAtE QUEIAJES.eeeteeteeiereereeseesteesseesseaeeaeesseesseesseesseassesseesseessesssessseansssssssessseesseensesnsenssessesnsesees 139
Y LT Lo 11 (T 4 T o = S 140
LY LT T 1= T 4 T 1 (= 141
TMG_IP_iStOgram _QENEIGLE.uecveiueeeeeeeeeieseestestestesseeeeeesees e seestesseaseeseesesteseestessessesseeneessesseseseessesseesennsensensees 142
LY LT T2 1 (T =4 T 00 [S 143
LI LT T T 7= o (111 = S 144
LI T = 111 S 145
LI LT T 1 (o L 0o =S 146
LY LT T2 o1 S 147
LY LT T (o= (=107 L= 148
LI LT L= U 0o = S 149
TMG_IP _threshold graySCalEccvieeeeeeiere st sie sttt et st e e e se et e re s aeese e e enaese e teseesrenneeneeneeneensenes 150
TMG_JPEG. DUFFEE FEAO ... e e e e e ee e e eee s es e es e s eseeeseeeseeeseeesseeseeeseeesesesesennesseene e 151
LY LT ST o0 1 (= 1= 152
LI (TN | ST o0] Lo T 7= (=S 153
TIMG_JPEG _COMPIESS....eeueeiteesteeteeteeseesseesteesseesseesseseesseesseesseesseenseenseassessessseesseessessssenseansssnsesseesseensemnsensessesnsesees 154
TMG_JPEG_COMPress iMage t0 MBIccvereeriereseestese s e eeste e ste s e st e e e e seestestesaestesneesee e enaeseessessesseeneeneenseses 155
TMG_JPEG _JECOMPIESS.....ccueeueeeeriitesteesesseeseeseessessessessesseaseessessessessessessessesssessessessessessessesnsessessessessessessemssensessensenes 156
TMG_JPEG_decompress imMage t0 IMAJE......cccivieierereeeereeeseestesteseesseseeaeseestestesaessesseeseessensessessessessessesssenseses 157
LY (TN | ST {1 1T v o = = 158
LI (TN ST 11 1= o 1= o S 159
TIMG_JPEG Il T ... eeeee e e e es e s seseeeseseseseseseseeeseeeseseseseseseseseseeeseseseeeseneseseseneenesseese e 160
LI LT | ST 11 L1 (S 161
LY (TN S R T r=o (= I o = = S 162
TMG_JPEG_SEQUENCE DU,ciiieececeeeeeses ettt s ae et s e e s e e e aeseesrenneeneeneeneeneenes 163

TMG_JPEG_sequenCe _CalC IENGLN.........ce et re e nneene e e e e eneenes 164

TMG Programmer’s Manual v4.0.4 iv

TMG_JPEG_SEQUENCE _EXITACE FraME.....ciiiiiie ettt st a e e st s tesne e e ene e e e e seenrenseeneenes 165
TMG_JPEG_SequENCE SEt SEAM fIaIMEecieeie ettt a e e st s ee st e neer e e e e eeseeneenneeneenes 166
LI LT L ST == 1117 o (= 167
TMG_JPEG St QUAIITY FACLON.....ccuiiisieie ettt e e e s ee st e saesre e e enees e e e ensesrenrenreeneenes 168
LY (IR & SO O U= o 1112 (o] - (o | S 169
TIVIG LUT 80D .o eeeeeeeeeeeeeeee s eeeeeeseseseeeeeees e s eeseeesesesseeseseseeesseesseeseeesseeseeesseeseeeseeesesesesesenesenesnesnennees 170
LY LTI O B T TSN 171
TIVIG LUT SOV ..o eeeeeeeeeeeeesee e eeeeeeseseseseeeeeseeesesesesesesesesesesesesessee s se e sseseese e eseeesesesesesesesenesesesesesnennees 172
TIMG _LUT _QBNEIELE......cecteeteeieeieeeeesteesteesteeseeseesaeesseesseenseeseesseesseesseensesneesseesseesaeenseenseeneesseessenssenssenssnessnensennsennenans 173
TIVIG LUT QB DT oo eeeeeeeeeeeeeeeeeee e s seeeeeseeeseeeseeesesesseessseseeesseeseeeseeesseesesesseeseeeseeeseneseseseseseeesnesnennees 174
LY LTS A =T ST (o T 1 - 1= S 175
TIMG_SPL_DBEAB2 10 Y 8..eoeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeeesseesseeeseeeseeeeseesesesseesseesseeseeeseeesesesseesseesesesssesesesenesenessesnennees 176
LY LTS R 11 o I (o T = 1 11 S 177
TMG_SPL_HSI t0 RGB_PSEUAO _COIOUNviviieeeeieiestisiesiecteeees e ste st st eesaesee e saesre e e enseneesresnesneeseeneenseseessessessennes 178
TMG_SPL_YUV422 t0 RGB_PSEUAO _COIOUNueeuieieisiesiecteeie e sie sttt s e e sae st eneeneeseessesneeresresneenes 179
TIMG_SPL_ X XXX B2 10 Y 8 oereeeeeeeeeeeeeeeeeeeeeeeeeseseseseeeseeeseseseeesesesseessseseeesseeseeeseeeseeesseeseeeseesseeeseeeseseseneseeessesesennees 180
TIMG WV LT _DUFFEE TE0 ... ee e e e e eeeeesee e es e eeseeseees e seeeseeesseeseesseeeseeesesesenesesesesessennees 181
LI LT AT AT S I o = 1 (S 182
TIMIG WV LT _COMPIESS....eeiueieueeeeeesteeteentesstesseesseesseesseesssanseassesseesseessesssesnsessesssessseesssenseensesssessesssenssesssnssseenseensesnsesns 183
TMG WV LT _ECOMPIESS......ccieeeieisteiteeteeeeeeseessestesseesesssesesseseessesseesesssessesessessesseaseensensessessessesseesenssnnsessessessensennes 185
TIMG WV LT Il FEA. oo seeeeeee e e s seseeesesees e s seseeesseeseeeseeeseeesseesseeseeesesesesesesesesesenesneenennees 186
LI L T AT AT S I 1= S 187
LI LI A AT I B 07 o (ST (== (=S 188
LY LI AT AT S B 07 o (ST L= o) 189
TMG_WVLT_Set QUAIILY FACLOKveeiieiee ittt sae b e e e e e es e e e e tesrenrenreeneenes 190

TIMG_ WV LT _SEE SUBDANAS. ..o vvveeeeeoee e eeeeeeesesseeeseseeseeeseeesseseesessseeesseeeeeseeessseeesseeeseeseseesseeeeesssseessseseeeseseseeees 191

TMG Programmer’s Manual v4.0.4 Introduction 1

Introduction

This manual describes the“TMG” image processing and display library. Thislibrary contains functions for reading,
writing, displaying and manipulating images under a variety of operating systems.

Under 32 bit Windows operating systems, such as Windows 98, 2000, XP etc, the library is available as a dynamic
link library (DLL). Under MS-DOS, the library is available as a static 32 bit library for Symantec C++ (using
DOSX/X-32VM) and Watcom C++ (using the 32 bit flat model). Under Solaris 2 it is available as a dynamic library
(.s0 - shared object). Under MacOS it is available as a shared and static library. Under LynxOS and VxXWorks, it is
available asa static library. The APl isidentical across all supported operating systems, apart from some minor
variations related to mainly display functions. The software development kit contains example code to illustrate how
to use the library in real applications.

The following sections describe the concepts, structure and methodology behind the library, as well a section with
detailed examples covering all the key areas. Finally each library function is described in detail. Asthislibraryis
licensed predominantly with the “ Snapper” and “LFG” image acquisition hardware, many examples refer to Snapper
image acquisition functions, although alternative acquisition hardware could equally be used.

It is strongly recommended that all the introductory sectionsin this manual are read and the examples provided with
the SDK are examined before using the library.

TMG Programmer’s Manual v4.0.4 Concepts 2

Concepts

OVERVIEW

All the TMG functions use a“handle” to represent the image, referred to asan “image handle”. Thishandleisa 32
bit unsigned integer. Each TMG routine uses the handle(s) passed into it to reference a pointer (through an internal
global array index) to an image structure, which contains all the image parameters and the image data itself (or a
strip of theimage). Seethefile “tmg.h” for details of the actual image structure (called struct Timage).

Each function is designed to operate on the whole image or a strip within the image. Strip processing allows several
functions to be chained together using only a small amount of memory. Thisis necessary when processing large
images or performing many processing operationsin a chain such that the full images cannot be accommodated in
memory. Another benefit with processing small amounts of memory (or strips of the image at atime) is the potential
performance benefit from the use of the processor’s cache. However with the large amounts of memory available in
computers nowadays, it is often simpler and unnecessary to consider strip processing.

A SIMPLE EXAMPLE

The best way to gain an understanding of how to use the library is by example. A simple examplein ‘pseudo code’
is shown below.

Generally speaking all image processing applications acquire an image, perhaps from a camera or read it from disk,
perform some operation(s) on that image, then write it back to disk, display it or even discard it. This operation can
be fairly memory intensive, if theimages are very large. The TMG library copes with large images by processing
images in strips as discussed above. The basic idea of strip processing isto read, process and write the image, N
lines at atime.

For example, an image with dimensionsis 256 x 256 could be processed 8 lines at atime. Thiswould require 32
processing operations - i.e. 8 x 32 = 256. Thisis precisely how the TMG library operates. In ‘pseudo code’ the
algorithm would be as follows:

Create the image structures (TMG_image_create).
Read the image to find out its dimensions (TMG_image _read).
Set the strip size to 8 lines per strip (TMG_image _set_parameter).
Calculate the number of stripsin theimage (TMG_image calc_total_strips).
For each strip:
Read inastrip (TMG_image _read).
Image Processing Operation Number 1 (e.g. TMG_IP_crop).
Image Processing Operation Number 2.
Image Processing Operation Number 3 etc...
Write a strip back out (TMG_image_write).
Destroy the image structures (TMG_image_destroy).

Of course if the strip size was set to the height of the image, there would be no need for the strip loop - i.e. each
function would only be called once and the code required much simpler.

For normal operation the final parameter on any strip processing function is set to TMG_RUN. If for any reason the
strip processing operation was aborted before the whole image was processed, the processing functions should be
called with TMG_RESET to reset internal statics that keep track of how much of the image has been processed. For
exampl e the operation may need to be aborted before it isfinished. In practice TMG_RESET israrely needed.

TMG Programmer’s Manual v4.0.4 Concepts 3

For the more “modern” 32 bit operating systems, such as Windows NT, Solaris 2 etc, it's easier to always process
the image in one strip (i.e. the whole image at atime). There are however several exceptions - for example the
function TMG_JPEG_compress, isfairly memory hungry and is best used with only 8 lines at atime.

Notice also that in the above pseudo code example it was necessary to read the image's height so that the number of
strip iterations could be calculated. When processing in one strip, TMG_AUTO_HEIGHT can be used on reading
images - thisinstructs the read function to automatically read the whole image.

MEMORY ALLOCATION

Each TMG function, that takes an input image and produces an output image, will free any memory associated with
the output image and allocate new memory for it (aslong as the memory is not locked). The newly allocated
memory for the output image will be the correct amount for the size of the image that is being processed. This
method is robust, but it is fairly wasteful in the amount of memory re-allocation it does - potentially slowing down
the processing. The solution to thisisto lock the memory (using TMG_image_set_flagswith TMG_LOCKED).

This means that once the memory is alocated - i.e. the first time the functionis called, it will never be freed until itis
unlocked (or the image destroyed using TMG_image_destroy). This has the benefit that memory is no longer re-
alocated by every TMG process. However there are some potential pitfalls that require alittle more care from the
application; the main ones being:

(a) if alarger imageis processed, the output image data area may not be large enough (i.e. it was allocated for a
previous smaller image); and

(b) if the application allocates the memory and locksiit, then it must unlock it and free it, because the TMG library
may be using different memory allocation routines than the application.

For the case of the larger image, (a) above, the “root” image (the first one in the chain) would have its memory
unlocked, which will result in all downstream images unlocking, freeing and re-allocating their image memory (the
root image could then be re-locked). There are plenty of examples of this on the SDK release disks. The section on
“Operating System Issues’ explains the actual memory allocation routines used for each operating system.

IMAGE DATA VERSUS JPEG IMAGE DATA

Each image handle references an image structure through an internal global array. Thisimage structure contains a
pointer to image data. Thisimage datais usualy raster image data, whose amount is related other internal
parameters such as image width and height. However it is aso possible to regard this image data as pure data - the
flag TMG_DATA STREAM indicates that thisisthe case (in thisinstance, the “image” is regarded as having a height
of one). Note also that the image data may actually contain a sequence of frames, as determined by the internal
parameter num_frames. Usually however only one image is contained within one image handle, and it’s often easier
to have an array of image handles for sequence work (not always the case for JPEG data - see below).

Within the image structure is a pointer to another structure that may or may not exist depending whether
TMG_image create or TMG_JPEG_image create was used to create theimage. TMG_JPEG image create creates
an additional JPEG structure containing all the JPEG parameters and a pointer to JPEG dataaswell. The JPEG data
can represent multiple frames (“motion JPEG”). In this situation JPEG restart markers are inserted between frames
of JPEG datato allow direct replay (and recording) from suitable JPEG hardware. There are a number of functions
for the manipulation of frames within a JPEG sequence.

It is possible for the application to allocate and setup the JPEG data area in the same way as for image memory area
(see TMG _image_set_ptr). Thisisthe only route when recording a motion JPEG sequence in which the application
knows how many frames and hence how much memory it should allocate. Of course when working with JPEG data,
generaly it is not possible to know in advance how much memory will be required. The TMG library allocates an
excess (actualy half the memory required for the raw image) and then optimises it later.

The image structures can be seen in the file “tmg.h” available on the SDK disks. Theimage structureis
struct Timage, and the JPEG structure is struct Tjpeg.

TMG Programmer’s Manual v4.0.4 Concepts 4

ADDING CUSTOM FUNCTIONS

Each TMG function has the same straight forward structure, which makes it convenient for a user to add his own
functionsif required. Thefile“tmg_scl.c”, available on the SDK disks, contains the function TMG_IP_subsample
which has been written in such away that it does not need to be compiled into the DLL (or static library) to run.
There are also many helpful comments added. This function may be used as a template for written custom functions.

VIDEO FIELDSAND THE “TMG_HALF_ASPECT” FLAG

When used with video acquisition hardware and software (such as Snapper) it may be a requirement that single video
fields are acquired, processed and displayed. The TMG library copes with this through the use of aflag and
parameter associated with the image. The flag, TMG_HALF_ASPECT, indicates that the image is a half aspect one,
i.e.avideofield. The parameter, TMG_FIELD_ID, isused to indicate which field it is - i.e. first or second. There
are only afew functions that need to use thisinformation - oneis TMG_SPL_2fields to_frame which is used to
reconstruct afull height image. The other ones that use this information are some of the display functions that re-
interlace the fields whilst displaying to achieve real-time display rates. See TMG_display_image for more details.

For some further information on the flag and parameter, see the functions TMG_image set_flags and
TMG_image set_parameter.

TMG Programmer’s Manual v4.0.4 Library Structure 5

Library Structure

The TMG functions are split into eleven main groups that are conveniently indexed by their name. The groups are:

TMG_BAY _...
TMG_CK ...
TMG_cmap ...

TMG _display ...
TMG_draw ...
TMG_image ...
TMG_IP ...
TMG_JPEG ...
TMG_LUT ...

T™MG_SPL ...
TMG_WWLT ...

This group perform Bayer conversion functions.
This group of functions performs operations related to chroma keying.

This group of functions relates to operations with colourmaps (or palettes). For example
their optimum generation etc.

This group performs image display (including printing).

This group perform text and timestamp drawing in images.

This group performs all the general purpose “housekeeping” type functions.
This group perform image processing functions

This group contains al the function relating to JPEG images.

Thisgroup is a set of functions for the generation and manipulation of look up tables
(LUTS).

This group contains special functions that don’t neatly fit into any of the other groups.

This group contains al the functions relating to wavelet images.

Some functions apply only to certain operating systems/environments. These functions have the operating
environment in square brackets after the function name for easy reference. If thereis none, then the function applies
to all operating environments.

(Note: Theterm “operating environment” means the combined operating system and windowing system in use. For
example the Solaris operating environment is Solaris 2 running the Common Desktop Environment, which itself is
running on top of Motif and in turn, the X Windows system.)

TMG Programmer’'sManual v4.0.4 Pixel Formats 6

Pixel Formats

INTERNAL IMAGE TYPES

Internally the image data can be stored in many types of pixel formats. There are quite afew different pixel formats,
but they all have their uses. Some of them are pixel formats from acquisition hardware, some are pixel formats
suitable for saving to standard file formats, and others are pixel formats that match that of display hardware, thus
saving valuable time by allowing direct display. Aswell as different pixel formats, there are three basic types of
image. Firstly, the ‘standard’ image that contains raw image data in one particular pixel format; secondly, JPEG
images that contain JPEG compressed data; and thirdly, DIB (device independent bitmap) images that contain the
image datain the DIB format suitable for display under certain specific operating systems (Windows NT/95/3.1).

The function TMG_image_convert allows conversion between all these different pixel formats.
The pixel formats are as follows:

TMG_BILEVEL Theimage isablack and white “line art” image, where each pixel is represented by one
binary bit. A ‘1’ representswhite and a‘0’ represents black. The binary datais packed
into bytes, such that the MSB isthe left most pixel. Thereislimited support for thistype
of image in the TMG library.

TMG_Y8 Theimage is agrayscale image, with each pixel represented by one byte, thus allowing
256 gray levels.
TMG_Y16 Theimage is a grayscale image, with each pixel represented by up to 16 bits, thus

allowing up to 65536 gray levels. An additional internal image parameter, data_width,
gives the number of valid bits. The dataisawaysLSB aligned.

TMG_PALETTED Theimage isa paletted (or colourmapped) image, where each pixel is represented by one
byte. Thisbyteisan index into the palette (or colourmap). Typically the palette will
have 256 entries of 24 bit RGB colours.

TMG_RGBS8 Theimage is acolour image, with each pixel represented by 8 bits, of the form
RRRGGGBB (i.e. 3 bitsfor red and blue and 2 bits for green - RGB 3:3:2, with red at
the most significant end). Thisformat is similar to TMG_PALETTED and could easily
be represented as a paletted image. For this reason thereis limited support (and use) for
this format.

TMG_RGB15 Theimage is acolour image, with each pixel represented by 15 bits, of the form
RRRRRGGGGGBBBBSB (i.e. 5 bits per colour, with red at the most significant end). A
16 bit word is used to store the data with the M SB unused.

TMG_RGB16 Theimage is acolour image, with each pixel represented by 16 bits, of the form
RRRRRGGGGGGBBBBB (i.e. 5 hits for red and blue and 6 bits for green, with red at
the most significant end).

TMG_RGB24 Theimage is a colour image, with each pixel represented by 24 bits, of the form RGB
(i.e. 8 bits per colour). The arrangement in memory is such that red is the first byte in
byte addressing.

TMG_RGBX32 Theimage isa colour image, with each pixel represented by 32 bits, of the form RGBX

(i.e. 8 bits per colour). The arrangement in memory is such that red is the first byte in
byte addressing. The X refersto an unused plane (although it could be used as an
overlay plane). Thisformat conveniently aligns the data to a 32 bit boundary.

TMG_BGRX32 Thisformat isidentical to TMG_RGBX32 except that the RGB order isreversed. Blueis
now the first byte in byte addressing. Thisis the native pixel format of most PC based
24 bit graphics cards (in 32 bit, 16.7 million colours mode).

TMG_XBGR32 Thisformat is similar to TMG_BGRX32 except that the RGB bytes are shift by one and
the X byte comes first in byte addressing. Thisisthe native pixel format of most
X Windows based 24 bit graphics displays on Sun SPARCstations.

TMG Programmer’'sManua v4.0.4 Pixel Formats 7

TMG_XRGB32 Thisformat is similar to TMG_RGBX32 except that the RGB bytes are shifted by one
and the X byte comeslast in byte addressing. This format is often used internally by
Mac workstations. Thereis limited supported for this format.

TMG_YUV422 Theimageisacolour imagein theform YUV 4:2:2. Thisisarranged such that is byte
addressing the data appearsas YUYV. Thisisastandard digital video format for colour
encoded video signals.

TMG_HS Theimage is acolour image in the form hue, saturation and intensity. The byte ordering
in memory is two bytes for hue, followed by one byte for saturation and one for intensity.
Thereislimited supported for this format.

TMG_CMYK32 Thisisa32 bit colour format, whereby the image is represented by the “ complementary”
colour cyan, magenta, yellow (and ‘black’). Thereislimited support for this format.

Many of these pixel formats are also used to describe the colour organisation of the display. For example a
Windows NT graphics mode using 65K colours nearly always uses the TMG_RGB16 pixel format.

The data alignment isto 16 bit boundaries, in other words the number of bytes per lineis always even. Some
functions (especially when running on 32 bit operating systems) are dightly faster if the datais 32 bit aligned (i.e. if
the number of bytes per line divides by four - thisistrue of al the 32 bit pixel formats listed above). Odd width
images are not fully supported by all functions, so it is recommended that even width images are used (thisis usualy
the case with all video related acquisition). Future releases of the TMG library will automatically align to 32 bits (in
fact programmable alignment) and provide full support for odd width images.

ACCESSING THE IMAGE DATA

The data can be directly accessed using the TMG_image _get_ptr function. Individual pixels may then be randomly
accessed by using the pointer to the image data, knowledge of the bits per pixel (given by the format) and the number
bytes per line (returned TMG_image get parameter with TMG_BYTES PER LINE).

TMG Programmer’s Manual v4.0.4 Error Returns 8

Error Returns

Almost all of the TMG library functionsreturn aTerr. Terr isa 32 bit unsigned integer, with the bit positions
defined asfollows:

31to24 Library identifier (returned on error, otherwise O isreturned). Thisisused to allow atop level calling
function to determine the library in which the error occurred.

Theidentifier isOx10 (#defined as TMG_LIBRARY _ID).
23t016 Error number, otherwise O if no error.

15t00 Function return value.

If the function call is successful, ASL_OK isreturned (which is #defined as 0) or the requested parameter. If an error
occurs, an error number isreturned in bits 23 to 16 along with the library identifier in bits 31 to 24.

Thefollowing isalist of error codes used by the TMG library, and a description of each error.

BAD_XXX ERRORS
ASLERR BAD HANDLE The handle has not been set up, or is corrupt.
ASLERR BAD_ IMAGE The image structure has not been set up, or is corrupt.

‘NOT POSSIBLE’ ERRORS

ASLERR NOT_SUPPORTED The requested operation is not supported, and is unlikely to be
supported in future.

ASLERR NOT_IMPLEMENTED The requested operation is not currently implemented, but may be
implemented in future.

ASLERR INCOMPATIBLE The requested option is not compatible with existing Snapper
settings.

ASLERR NOT_RECOGNIZED The requested option is not recognised.

FUNCTION PARAMETER ERRORS

ASLERR BAD PARAM A parameter passed to a function has not been recognised.

ASLERR OUT _OF RANGE A parameter passed to afunction isinvalid - typically too large or
too small.

ASLERR PARAM_CONFLICT Two or more parameters passed to afunction are mutually
exclusive.

OPERATING SYSTEM ERRORS

ASLERR OUT_OF MEMORY A system call to reserve memory has failed.
ASLERR THREAD ERROR A system call to control a separate thread of execution has failed.
ASLERR DRIVER CALL_FAILED A call to the Snapper device driver hasfailed. For operating

systems with a console (e.g. Solaris) check the console for any
error messages from the driver.

ASLERR SYSTEM_CALL_FAILED An operating system call (other than those listed above) failed.
For MS-DOS and Windows 3.1 thisis used for BIOS and
graphics driver calls.

TMG Programmer’s Manual v4.0.4 Error Returns

FILE AND RELATED ERRORS

AS_ERR _OPEN_FAILED Open failed.

AS_LERR CLOSE_FAILED Close failed.
AS_LERR_READ_FAILED Read failed.

AS_LERR WRITE_FAILED Write failed.
ASLERR_SEEK_FAILED Seek operation failed.

AS ERR_CORRUPT File or data stream is corrupt.

MISCELLANEOUS ERRORS

ASLERR OUT_OF HANDLES No free handles were found.

ASLERR _INTERNAL _ERR Aninternal error was detected in the libraries.
AS_ERR_IN_PROGRESS The requested operation is aready in progress.

ASLERR INVALID_STATE The library has detected an invalid state in the software or

hardware, but cannot determine a more specific cause of the
problem.

TMG Programmer’'sManual v4.0.4 Operating System I ssues 10

Operating System Issues

The TMG library is designed to run on virtually any operating system (and internally uses the same source code). To
alow this, certain types and functions have been defined in the header files that allow for differences between
operating systems whilst still preserving common source code. Some of the differences are described below. Full
details can be found in the header file “os_sys.h” available with the SDK.

DATA TYPESAND IMAGE DATA POINTERS

Sizes of integers vary between compilers and operating systems and are a potential source of portability errors. To
overcome this the following types are used - that are constant across al compilers and operating systems:

ui8 8 bit unsigned integer (unsigned char)
uile 16 bit unsigned integer

ui32 32 bit unsigned integer
i16 16 bit signed integer etc.

For pointers to image data the following types are used:

IM_UI18* Pointer to an 8 bit unsigned integer
IM_UI16* Pointer to a 16 bit unsigned integer
IM_UI132* Pointer to a 32 bit unsigned integer.

These are actually the same as the basic data types above (i.e. IM_UI8* = ui8*) under all operating systems apart
from Windows 3.1. Under Window 3.1 these types include the _huge modifier that allows the pointer to auto-
increment across a 64K memory boundary. Note that the _huge modifier only modifies the variable to its immediate
right, so the following code will fail:

IMU 8 *pDatal, *pData2; /* Only pDatal is nodified to __huge */

The correct definition is as follows:

IM U 8 *Pdat al;
IM U 8 *Pdat a2;

Under Windows 3.1 the large memory model should be used.

MEMORY ALLOCATION METHODS

The method used for memory allocation varies between the different operating systems. For example Solaris 2 uses
memalign. The #defines MALLOC and FREE are used internally in the TMG library and are defined in the file
“asl_gen.h” available with the SDK - please refer to thisfile for more details.

ENDIAN ISSUES

Different operating systems (usually dependent on the processor architecture) will have different byte ordering for 16
bit and 32 bit words. For example most Intel processors are little endian, that is byte O is stored in bit locations O to
7, where as on a big endian processor (such as the SPARC) byte 0 is stored in bit locations 24 to 31 in a 32 bit word.

Endian issues obvioudy do not effect the interpretation of 8 bit grayscale data, but will potentially have an effect on
any 16 or 32 bit format (such as TMG_Y16 or TMG_RGB16 etc). To avoid potential pitfalls here, 16 bit data should
always be accessed as a 16 bit word (apart from simple copies when 32 bit read/writes can be done). Thisiswhat
the TMG library doesinternally. 32 bit formats, such as TMG_RGBX32 are effectively endian independent, because
here the format is defined to be the byte order in byte addressable memory, thus TMG_RGBX32 meansred in byte 0,
greenin byte 1 etc. This meansthat if read asa 32 bit word the bytes will appear in different locations within that
word on different endian processors. The TMG library iswritten to take account of this, and any application
program accessing the data directly needs to be aware of this.

CONVERSION LOOK UP TABLES

Some look up tables (LUTS) used within the library have different sizes dependent on the operating system. The
basic ruleisthat the LUTs may be smaller under Windows 3.1.

TMG Programmer’'sManua v4.0.4 Operating System I ssues 11

In summary:
e TheTMG_LUT _ suite of functions draws no distinctionin LUT size.

e Theimage conversion LUTs (see TMG_image conv_LUT _generate) YUV 4:2:2 to RGB15/16 are 64K bytes
under Windows 3.1 and 1M byte under all other operating systems. These definitions can be found in the file
“tmg.h” under “YUV to RGB LUT Definitions”.

e TheUV tohueLUT used inthe TMG_CK_ functionsis 64K bytes under Windows 3.1 and 128k bytes under all
other operating systems. See TMG_CK_generate UV _to_hue LUT.

The smaller LUTs used by Windows 3.1 result in adightly lower conversion quality, but thisis not significant.

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 12

Image Display Functions and Examples

The same basic core of functions are used to display images under each supported operating system. There are some
minor variations between each operating system due to the native API of the actual environment, but essentially the
methodology isthe same. Note that the use of TMG functions to display images does not preclude the use of other
libraries and/or native callsin the operating environment. The following sub-sections describe in detail how to
display images under each supported operating environment.

The term “ operating environment” means the combined operating system and windowing (or display) system in use.
For example the Solaris operating environment is Solaris 2.x running the Common Desktop Environment, which
itself isrunning on top of Motif and in turn, the X Windows system.

The convention in this manual is that any commands that do not apply to all operating environments list the ones that
they do apply to by listing them in square brackets after the function name. For example:

TMG_display_set_paint_hDC [Windows]

The Windows NT/95/3.1 examples are from real applications using the Microsoft Foundation Class (MFC)
application framework.

In summary the different types of operating environments with respect to display are:

e “Windows’ —Thisisfor Windows NT and Windows 95 using DirectDraw. It also appliesto Windows 3.1 and
DCI (Display Control Interface — the predecessor of DirectDraw).

e “DOS’ —Thisisfor MS-DOS and other MS-DOS lookalike operating systems.
e “X Windows’ —This coversthe X Windows system that is used for Solaris, LynxOS, VxWorks
e “MAC” —Thiscoversdisplay to the MacOS GUI.

IMAGE DISPLAY UNDER WINDOWS (INCLUDESWINDOWSNT, WINDOWS 95 AND
WINDOWS 3.1)

The TMG library uses the basic Windows calls as well as DirectDraw and some proprietary display methods. The
TMG display functions are designed to make it as easy as possible to display images with a reasonable amount of
flexibility, yet without the learning curve and complications of displaying using the standard Windows calls. Also
the fast DirectDraw method is al handled automatically within the library. Of course experienced Windows
programmers can till use the GDI (Graphical Device Interface) function calls directly.

The basic function groups are as follows:

« TMG display create, TMG_display_init and TMG_display set paint hDC [Windows] are used to initialise the
display. TMG_display_create would be used once at the start of the program to create a display handle.
TMG_display_init would be used to associate a particular Windows 3.1 window with the display handle.

TMG _display_set_paint_ hDC would be used each time a different device context was provided - for examplein
an OnDraw function.

 TMG_display_set ROI isused to set aregion of interest to display to (within awindow), and
TMG_display_image actualy displays the image.

« TMG display get parameter can be used to read back certain information about the display such as colour depth
etc.

 TMG_display print_ DIB [Windows] can be used to print a DIB image to the printer in the usual way under
Windows.

The following exampl e code shows how an image would be displayed. The code has been lifted from the example
application “IMV” from the Snapper Windows NT SDK. Please refer to thisfor more details.

/1 This code resides in inv.cpp.

/1l Create the display handles.

I W. m hDi splay = TM5 di spl ay_create();

IW.mhPrinter = TM3 display_create(); // The printer is a display device.

TMG Programmer’s Manual v4.0.4

Image Display Functions and Examples 13

/1 This code is frominvview cpp - but sinplified slightly.
/1 This is the standard OnDraw function.
void Cl mvVi ew. : OnDr awm(CDC* pDC)

{

static BOOL bFirstTine = TRUE;

if (bFirstTime == TRUE)

bFirstTi me = FALSE;
if ASL_is_err(TMG display_init(lMW.mhDisplay, GetSafeHand()))

}

. MessageBox (0, “Unsupported Mde.”, “FAILED', MB_(K);

if ((TMG.inage_get _ptr (1 W. m hDI Bl mage, TMG | MAGE_DATA) != NULL) &&

{

(TMG_i mage_get _ptr (| W. m_hDDBI mage, TMG | MAGE_DATA) != NULL))

if (pDC->IsPrinting())

{

}

/1 Set up the dinensions, then print supplying a % scaling paraneter.
TMG_di spl ay_set _paraneter (I MW. m hPrinter, TM5 W DTH,
(ui 16) pDC- >Cet Devi ceCaps(HORZRES)) ;
TMG di spl ay_set _paraneter (I MW. m hPrinter, TMG HEl GHT,
(ui 16) pDC- >Cet Devi ceCaps(VERTRES)) ;
/'l special device context for printer
TMG_di spl ay_set _pai nt _hDC(1 M. m_hPrinter, pDC- >Get Saf eHdc()):;
/1 Print at 85%full size print area:
TMG di splay_print_DIB(I W. m hPrinter, | MW.mhDl Bl mage, 85, TMG RUN);
TMG di spl ay_set _pai nt _hDC(| W. m hPrinter, 0);

else /* Display */

{

switch (m_pD g->m nScal i ngOpti ons)
{
case DLG NO SCALI NG
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, FALSE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, FALSE);
br eak;
case DLG SCALE NO ASPECT:
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, TRUE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, FALSE);
br eak;
case DLG SCALE_KEEP_ASPECT:
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, TRUE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, TRUE);
br eak;

}

/1 Only need hDC in OnDraw OnPai nt where pDC i s passed in.
TMG_di spl ay_set _pai nt _hDC(1 M. m_hDi spl ay, pDC- >Get Saf eHdc());

swi tch (m_pDi g- >m nDi spl ayDl B)
{
case DLG DI B _DI SPLAY:
TMG di spl ay_i mage(| W. m hDi spl ay, | W. m hDI Bl mrage, TM5 RUN);
br eak;
case DLG DDB DI SPLAY:
TMG di spl ay_i mage(| W. m_hDi spl ay, | W. m hDDBI mage, TM5 RUN);
br eak;
case DLG DI RECT_ DI SPLAY:
if (TMG_di spl ay_get _paraneter (| W. m _hbDi spl ay,
TMG_DI SPLAY_DI RECT_CAPS) == 0)

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 14

{ I/ DirectDraw for WnNT/95, DCl for Wn31
Print ToStatusBar ("A DirectDraw DCl driver is not present");
eResult = ~ASL_CK; /1 Things are not OK

}
el se
{
TMG di spl ay_set _fl ags(l W. m hDi spl ay, TMG DI SPLAY_DI RECT,
TRUE) ;
TMG _di spl ay_i mage(| W. m_hDi spl ay, | M/. m hDDBI mage, TMG RUN);
}

TMG di spl ay_set _flags(l W. m hDi spl ay, TMG DI SPLAY_DI RECT,
FALSE); // Switch off to keep tidy.
br eak;
} /* End switch statenment */
TMG_di spl ay_set _pai nt _hDC(| W. m_hDi spl ay, 0); /* Set back */
} /* End else display */

}

}
The difference between the DIB (device independent bitmap) and DDB (device dependent bitmap) is the format of
the images IMV.m_hDIBImage and IMV.m_hDDBImage. The DIB isa 24 bit file, generated using
TMG_image _convert to format TMG_BGR24 with TMG_IS DIB set. The DDB is pixel format that matches that of
the display. For exampleif the display format (see TMG_display_get_parameter) is TMG_RGB16, then the format
of the DDB will also be TMG_RGB16. For example, the DDB image may have been generated using
TMG_image convert to TMG_RGB16. The DDB display method is much faster than the DIB method but
sometimes the final rendered quality is not asgood. (Thisis because the display driver may dither the 24 bit DIB

down to RGB16.) Using DirectDraw is essentially the same as the DDB method except the DirectDraw method is
generaly faster.

IMAGE DISPLAY UNDER DOS

To display images under MS-DOS, the Flash Graphics library, by Flashtek Inc. isrequired. Thisisalow cost yet
comprehensive graphics library that is royalty free and can be purchased with the SDK. Please contact you local
distributor for information if you do not possess a copy.

The TMG library isalayer above the Flash Graphics library and converts TMG API callsinto Flash Graphics
functions calls. Only asmall proportion of Flash Graphics routines are available through TMG calls and anyone
seriously programming graphics under DOS should refer to the Flash Graphics manual to see what elseis available.

The basic function groups are as follows:
« TMG display create and TMG_display_init are used to initialise the display.

 TMG_display _set ROI isused to set aregion of interest to display to, and TMG_display_image actually displays
the image.

« TMG display get parameter can be used to read back certain information about the display such as colour depth
etc.

The following exampl e code shows how an image would be displayed. The code has been lifted from the example
application “s24dos’ from the Snapper SDK. Please refer to this for more details.
Thandl e Hdi spl ay;

Hdi spl ay = TMG di spl ay_create(); /* Create a handle to the screen */

/* Initialise display to 800 by 600 by 65k col ours */
if ASL_is_err(TMG di splay_init(Hdisplay, TM5 800x600x16))
printf(“Failed to initialise display”);

/* Convert to an RGB16 i mage and display */
TMG_i mage_convert (Hvi d_i nage, Hdi spl ay_i mage, TMG RGB16, 0, TMG _RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hdi spl ay_i mage, TMG RUN);

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 15

/* Switch back to the nornal DOS pronpt on exit */
TMG di splay_ini t (Hdi spl ay, TMG DOS_PROWMPT) ;

The Flash Graphics library can be purchased from your local Snapper distributor.

IMAGE DISPLAY UNDER X WINDOWS

The X Window System, based on the X library, isthe low level graphicsinterface used by most Unix type operating
systems. Thisincludes Solaris 2.x, LynxOS and VxWorks.

The TMG library isalayer above the X library and converts TMG API callsinto Xlib functions calls. Only a small
proportion of Xlib routines are available through TMG calls and anyone seriously programming graphics under
X Windows should refer to the Xlib Programming Manual.

The basic function groups are as follows:
 TMG display create and TMG_display_init are used to initialise the display.

 TMG_display set ROI isused to set aregion of interest to display to, and TMG_display_image actually displays
the image.

« TMG display_set Xid [XWindows] isused with several different parameters (such as X Window ID) to set up
the display.

 TMG_display _get parameter can be used to read back certain information about the display such as colour
depth, or number of reserved colours etc.

The following exampl e code shows how an image would be displayed. The code has been lifted from the example
application “Xtmg” from the Snapper LynxOS SDK. Pleaserefer to thisfor more details.

/* This code would typically go in main() */
Thandl e hDi spl ay;
Thandl e hl mage;

ASL_err_set _reporting(ASL_ERR SET_HANDLER, ASL_err_di spl ay);
hl mage TMG i mage_create();
hDi spl ay TMG di spl ay_create();

/* Connect to X-server to obtain window and di splay information */
pdDi spl ay = XOpenbDi splay(...);

/* Set the X Wndow I D before TMG display_init */
TMG_di spl ay_set _Xi d(hDi spl ay, TMG XI D_W NDOW WW n) ;
/* Initialise the TM5 di splay interface */

TMG di splay_init(hDi splay, TMG X W NDOWS) ;

get _gc(wwWn, &gcView, xfsFont);

XvapW ndow(pdDi spl ay, WWn);

event _| oop();
} /* End main */
The X Windows programming convention uses an event handling loop which branches on user or system events. The

‘update display’ event would be used for display of the image on initial display and whenever the window is moved
or re-sized:

voi d event _| oop(voi d)

{
static int bFirst = TRUE;

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 16

whi | e (TRUE)

XNext Event (pdDi spl ay, &xeReport);
swi t ch(xeReport.type)

{

case Expose:
/*Don't redraw unless this is the |ast contiguous expose */
if (bFirst == FALSE)
{

if (xeReport.xexpose.count != 0)
br eak;

}
bFi r st =FALSE;
/* Draw somet hing */
dwsSt at us = TMG di spl ay_i mage(hDi spl ay, hlnagel, TMG RUN);
br eak;

case ConfigureNotify:

/* W ndow has been noved/re-sized, update any wi ndow size variabl es so

* imm nent redraw takes place correctly
*/
br eak;

case ButtonPress:

case KeyPress:
XUnl oadFont (pdDi spl ay, xf sFont - >fi d);
XFreeGC(pdDi spl ay, gcVi ew) ;
X oseDi spl ay(pdDi spl ay) ;
TMG_di spl ay_destroy(hbDi spl ay) ;
TMG i mage_dest roy(hl magel);
exit(1); /* In this exanple we use keypress to quit */
br eak;

defaul t:
/* Al events selected by StructureNotifyMask except ConfigureNotify
are
* thrown away here since nothing is done with them
*/
br eak;
} /* End switch */
} /* End while */

} /* End Event Loop */

More examples can be found in the demonstration applications available with the Snapper LynxOS SDK.

The following exampl e code shows how an image would be displayed under Solaris and OpenWindows. Although
OpenWindows is no longer marketed by Sun, this example may still be useful.

/* This code would typically go in main() */
Thandl e Hdi spl ay;

i—ldi splay = TMG di spl ay_create();

/* Set up the X Wndows |Ds before TMG display_init */
TMG di spl ay_set _Xi d(Hdi spl ay, TMG XI D_FRAME,

(Wndow) xv_get (Vi ew Basew n->Basewin, XV_XI D));
TMG di spl ay_set _Xi d(Hdi spl ay, TMG _XI D_CANVAS,

(W ndow) xv_get (Vi ew_Basew n->Basewi nCanvas, XV_XID));

if (TMG display_init(Hdisplay, TMG X WNDOAS) == ASL_OK) {
if (TMG_di spl ay_get _paraneter (Hdi spl ay, TMs DEPTH) == 8) {

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 17

XReservedCol ours = (ui 16) TMS di spl ay_get _par anet er (Hdi spl ay,
TMG_RESERVED_COLOURS) ;

fprintf(stderr, “\nDisplay initialised: % free colours found.\n\n",
(int) 256 - XReservedCol ours);

if (XReservedCol ours > 16) {
XReser vedCol ours = 16; /* we wll use at | east 240 col ours */
TMG_di spl ay_set _par anet er (Hdi spl ay, TM5_RESERVED CCOLOURS,
XReser vedCol ours);

}
}
el se
fprintf(stderr, “\nDisplay initialised: 24 bit display.\n\n");

} /* End main */

The X Window ID would typically be set from the repaint routine as shown below:

/*
* Repaint callback function for " Basew nCanvas'.
*/
voi d Basew nRepai nt (Canvas canvas, Xv_w ndow pai nt _w ndow, Display *display,
W ndow xid, Xv_xrectlist *rects)
{

TMG di spl ay_set _Xi d(Hdi spl ay, TMG XI D_W NDOW xi d);

More examples can be found in the demonstration applications available with the Snapper Solaris SDK.

IMAGE DISPLAY UNDER MACOS

The TMG display environment for MacOS uses the QuickDraw or Colour QuickDraw display manager to handle all
display to the screen. Multiple screens are alowed as long as the QuickDraw manager supportsit.

For in-depth details on the QuickDraw interface refer to the MacOS Toolbox reference manuals, available online
from Apple or in hardback from bookshops.

The basic function groups are as follows:
 TMG display create and TMG_display init are used to create and then initialise the display.
 TMG_display_set ROI isused to set the location and clipping of an image on the display.

 TMG display_set mask is a MacOS-specific function used to set a mask region on the display for usein
overlays.

« TMG_display_get parameter can be used to read back certain information about the display such as colour or
grey scale display, pixel depth and pixel format.

« The following example code shows how an image would be displayed. The code has been lifted from the
example application “gui.c” from the Snapper SDK application example code. Please refer to this for more
details.

struct QU {.... .} qui;
struct QU * psQui;

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 18

/*

This code would typically go in main() */

voi d mai n(voi d)

{

}
/*

ui

{

Terr teStatus = ASL_CK;
Pi xMapHandl e hpnPl ayThr u;
char TenpString[MAX_FI ELD LENGTH] ;

InitGaf(&qd.thePort);

I nitFonts();

I nitWndows(); /* Loads the w ndow resource */

I ni t Menus(); /* Loads the menu resource */

TEInit(); /* Text-editor init - needed for window title display

apparently */

InitDialogs(nil); /* Needed for systemalert nessage box & other stuff-
apparently */

InitCursor();

/[* Set up systemnenu entry for our window - '"QUIT is the only entry. */
psCGui - >hMenuBar = Get MenuBar (mrngMBar);

Set MenuBar (psQui - >hMenuBar) ;

Dr awiVenuBar () ;

/* Make a new wi ndow for drawing in, and it must be a col our w ndow.

* The display can be sized to the wi ndow size |ater.

*/

strcpy(TenpString, psGui->szWnNane);

psGui - >pW n = NewCW ndow(nil, &psQui->w ndRect, c2pstr(TenpString), true,
noG owDocProc, (WndowPtr) -1, true, 0);

/* set window to current graf port */
Set Port (psQui->pWn);

psCGui - >hDi spl ay = TMG di spl ay_create();
i f(psCGui->hDisplay == TM5_ | NVALI D_HANDLE)
TMG err_ret(ASL_ERROR, "Failed to acquire display ", 0, szFnNane);

/[* Cbtain a valid PixMapW ndow to display with */
hpnPl ayThru = Get W ndowPort (psCQui ->pWn)->portPi xMap;

/[* Initialise display with Pi xMapW ndow */

teStatus = TMs di splay_init(psQui->hDisplay, hpnPlayThru);

psCGui - >wDi spl ayFormat = TMG di spl ay_get _paraneter(psCGui - >hDi spl ay,
TMG_PI XEL_FORNAT) ;

psCGui - >wDi spl ayDept h = TMG di spl ay_get _paraneter(psCui - >hDi spl ay,
TMG_DEPTH) ;

/* Set QuickDraw font size */
Text Si ze(8);

Event Loop() ;

/* End main */

The event | oop consists of nunerous events which nust be detected and
handl ed, the one of interest is the redraw event..*/

32 EventLoop (void)

Terr teStatus = ASL_CK;

/* Mac variables */

Event Record evEvent;
W ndowPt r wWW ndow;

TMG Programmer’s Manual v4.0.4 Image Display Functions and Examples 19

/* Check for any user input - ie nobuse or keystrokes.

* Set kSleep to O for imediate return if no message waiting — returns
* FALSE & NULL event.

* However value of O fails to allow the OS to do background processing -
* VERY inportant for MacOS - nasty side effects otherw se!.

*/

while ((seCurrentEvent.dwCnd) !'="'Q &&
Wi t Next Event (everyEvent, &evEvent, /*kSleep*/ 1, nil) == true &&
('ASL_is_err(teStatus)))

{

switch (evEvent.what)
{
case null Event:/* No nmessage found so break out should be caused by
* Wit Next Event returning 'false' on null Event.
*/
case updateEvt:/* |If the nmessage is telling us that it is our w ndow
* needi ng the update.
*/
if ((ps@ui->pWn !'= NULL) &&
((WndowPtr) evEvent . nessage == (W ndowPtr)psQui->pWn))

{
Begi nUpdat e(psQui - >pWn) ;
[* redisplay */
TMG i mage_di spl ay(psQui - >hl mage);
EndUpdat e(psCui - >pW n) ;

}

br eak;

defaul t:
br eak;

} /* End switch statenent */
} /* End while */
return;

}

TMG Programmer’s Manual v4.0.4 Sample Applications 20

Sample Applications

This section contains either example applications or major code fragments that show how to use key areas of the
TMG library.

All the examples shown have been extracted from real examples provided with the Snapper SDK. There are
additional (more detailed) example applicationsin the SDK and it is strongly recommended that these are referred to
before embarking on application development. The Windows NT/95/3.1 examples are from real applications using
the Microsoft Foundation Class (MFC) application framework.

A SIMPLE TMG PROCESSING EXAMPLE

This example shows the basic operation of the TMG library. This program readsin a TIFF file (or in fact any
supported file format), mirrorsit and then writesit out asa TIFF file. The file contains a compiler pre-processor
directive_PROCESS IN_1 STRIP to determine whether to process theimage in one strip or strips of 8 linesat a
time. Thisexampleisfrom thefile“process.c”:

#i ncl ude <asl _inc. h>

voi d mai n(ui 16 argc, char** argv)
{
Thandl e Hi n_i mage, Hout _i mage;
ui 16 strip, total _strips;
ui32 lines_this_strip = 8;

printf("\nTM5 | mage Processing Exanple - v3.0\n");
printf("Usage : process <input_filename> <output_fil ename>\n");

H n_i mage = TMG_ i mage_create();

Hout _i mage = TMG_ i nage_create();

TMG i mage_set _infil enane(Hi n_i mage, argv[1]);
TMG i mage_set _outfil ename(H n_i mage, argv[2]);

#i fdef _PROCESS_IN 1_STRIP
/* Note generally only 32 bit applications can process the image in */
/* 1 strip because of nenory linmtations / cache benefit */
TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S _STRI P, TMG AUTO_HEI GHT) ;
total _strips = 1;
#el se /* Multiple strips */
/* Check that input file exists, and deternmine its size */
TMG i mage_set _paraneter (H n_i nage, TMG LINES TH S STRIP, 0);
if (TMG.i mage_read(Hi n_i mage, NULL, TMG RUN) != ASL_OK) {
printf("Failed to open file %\n", argv[1]);
exit(0);
}
TMG i mage_read(H n_i mage, NULL, TMG RESET);
TMG i mage_set _paraneter (H n_i nage, TMG LINES THI S STRIP, lines_this_strip);
total _strips = (uil1l6) TMG.inmage_cal c_total _strips(Hi n_imge);
#endi f [* multiple strips */

for (strip = 0; strip < total _strips; strip++) {
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMG RUN);
TMG I P_mirror_i mage(H n_i mage, Hout _i nage, TMG RUN);
TMG i mage_write(Hout _i mage, TMG NULL, TMG TIFF, TMG RUN);
}
TMG i mage_dest roy(TMG_ALL_HANDLES) ; /* Free the menory */

}

TMG Programmer’s Manual v4.0.4 Sample Applications 21

TEST PATTERN GENERATION

This example shows how to generate an image “from scratch” - in this case a grayscale ramp, and saveit asa TIFF
file. Notethisexample also illustrates how individual pixels may be accessed and modified, hence allowing image
processing operations from a user application. Thisexampleisfrom thefile “pgen.c”:

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)
{

Thandl e Hi mage;

ui 32 hei ght, width;

ui 32 line, pixel;

ui 8 *Pdata;

printf("\nTIFF File Pattern Generator - v3.0\n");

/* Create an image */
H mage = TMG i nage_create();
TMG i mage_set _outfil ename(H mage, "pattern.tif");

/[* OK lets nake an image */

w dth = 256;

hei ght = 256;

TMG i mage_set _par anet er (H nage, TMG W DTH, wi dth);

TMG i mage_set _par anet er (H nage, TMG HElI GHT, height);

TMG i mage_set _par anet er (H nage, TMG Pl XEL_FORMAT, TM5 Y8);
TMG i mage_set _paranet er (H nage, TMG LINES TH S STRI P, height);

if (TMG_i mage_check(H mage) !'= ASL_OK) /* Fills in bytes_per_line */
{

printf("PGEN: Corrupt image\n");

exit(0);
}

/* This is an internal function that conveniently allocates a strip
* of image data based on lines_this_strip and bytes_per_line. */
if (TMG.image_malloc_a_strip(H mage) != ASL_CK)

{
printf("Failed to malloc sufficient menory\n");
exit(0);
}
Pdata = (ui 8*) TMG.i mage_get _ptr(H mage, TMG | MAGE_DATA);
/* Lets put a ranmp pattern in the image */
for (line = 0; line < height; |ine++)
for (pixel = 0; pixel < wdth; pixel++)

{
}

TMG i mage_write(H mage, NULL, TMG TIFF, TMG RUN);

*Pdat a++ = pi xel % 256;

TMG i mage_destroy(TM5G ALL_HANDLES); /* Free the menory */

SOFTWARE JPEG DECOMPRESSION AND DISPLAY

This example shows how to use the TMG JPEG decompression functions to read in a JPEG file and display it. The
input JPEG file is decompressed and displayed 8 lines at atime. Thisexampleisfrom thefile“jview.c":

TMG Programmer’s Manual v4.0.4 Sample Applications 22

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e H peg_i nage, Htenp_i mage, Hdi sp_i mage;

Thandl e Hdi spl ay;

ui 16 strip, total _strips;

printf("\nJPEG | mage Viewer - v3.0\n");

/* Create inmmage structures */

Hdi spl ay = TMG di splay_create(); /* create a handle to the screen */

H peg_i mage = TM5 JPEG i mage_create();

Ht enp_i nage = TMG_ i mage_create();

Hdi sp_i nage = TMG_ i mage_create();

TMG i mage_set _infil enane(H peg_i mage, argv[1]]);

if (TMG_JPEG file_read(H peg_image) != ASL_OK) {
printf("Failed to read in JPEG file\n");
exit(0);

}

if (ASL_is_err(TMG display_init(Hdisplay, TM5G 800x600x16))) {
printf("\nFailed to initialise VESA graphics card\n\n");
exit(1);

}

TMG_ i mage_set _paranet er (H peg_i mage, TMG LINES THI S_STRI P, 8);

total _strips = (uil1l6) TMS image_cal c_total _strips(H peg_i mage);

for (strip = 0; strip < total _strips; strip++) {
TMG_JPEG deconpress(H peg_i mage, Htenp_i nage, TMG _RUN);
TMG_ i mage_convert (Ht enp_i mage, Hdi sp_i mage, TM5 RGB16, 0, TM5 RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hdi sp_i mage, TMG RUN);

}

/[* return to the DOS pronpt */

TMG di spl ay_i nit (Hdi spl ay, TMG DOS PROWPT) ;

/* Free the nenory used by the images */

TMG i mage_dest roy(TM5_ALL_HANDLES) ;

}

SOFTWARE JPEG COM PRESSION

This example shows how to use the TMG JPEG functions to compress a TIFF file (or in fact any supported file
format). Theinput fileisread in (the whole image) then compressed 8 lines at atime to conserve memory, before
being saved as a JPEG file. Thisexampleisfrom thefile “compsw.c”.

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e Hi n_i mage, H peg_i mage; /* input and output images */

H n_i mage = TMG_ i mage_create();
H peg_i mage = TM5 JPEG i mage_create();

TMG i mage_set _infil enane(Hin_i mage, “in.tif”);
TMG i mage_set _outfil enane(H n_i mage, “out.jpg”);

TMG Programmer’s Manual v4.0.4 Sample Applications 23

TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S STRIP, 8);

TMG JPEG set _Qual ity_factor(H peg_i mage, 32);

TMG_JPEG conpress_i mage_to_i mage(H n_i mage, H peg_i mage, TMS FI LE,
TMG_FI LE) ;

TMG i mage_dest roy(TM5_ALL_HANDLES) ;

CONVERTING A 24BIT COLOURIMAGE TO A PALETTED IMAGE

This example shows how use the TMG_cmap functions to generate an optimum colour palette and use it to convert a
24 bit colour image to an 8 bit paletted one. (Notethat if the image is processed in strips, asin this example, two
passes are effectively needed). This exampleisfrom thefile“cmap.c”:

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e Hi n_i mage, Hout _i mage;
ui 16 strip, total _strips;
ui32 lines_this_strip = 8;

printf("\nTMG Col ourmap/ Pal ette Generation Exanple - v3.0\n");

/* create the inmages */

H n_i mage = TMG_ i mage_create();

Hout _i mage = TMG_ i nage_create();

TMG i mage_set _infil enane(Hi n_i mage, argv[1]);
TMG i mage_set _outfil ename(H n_i mage, argv[2]);

/* work out the height and nunber of strips */
TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S STRIP, 0);
if (TMG.inmage_read(Hi n_i mage, NULL, TMG RUN) != ASL_OK) {
printf("Failed to open file %\n", argv[1]);
exit(0);
}
TMG i mage_read(H n_i mage, NULL, TMG RESET);
TMG i mage_set _paraneter (H n_i nage, TMG LINES THI S STRIP, lines_this_strip);
total _strips = (uil1l6) TMS.inmage_cal c_total _strips(Hi n_imge);

printf("Generating palette");

for (strip = 0; strip < total_strips; strip++)

{
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMG RUN);
TMG _cnmap_gener at e(Hi n_i mage, 256, TMG RUN);

}

printf("\nMapping image to palette");
for (strip = 0; strip < total_strips; strip++)

{
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMS RUN);
TMG i mage_convert (Hi n_i mage, Hout _i mage, TMG PALETTED, 0, TM5 RUN);
TMG i mage_write(Hout _i mage, TMG NULL, TMG TIFF, TMG RUN);

}

printf("conplete\n");

/* Free the nmenory */
TMG i mage_dest roy(TM5_ALL_HANDLES) ;

TMG Programmer’s Manual v4.0.4 Sample Applications 24

DISPLAYING COLOUR AND GRAYSCALE IMAGES SIMULTANEOUSLY TO A PALETTED DISPLAY

This example code fragment shows how use the TMG_cmap functions to set up the palette so that a colour and
grayscale image can be displayed simultaneously with reasonable quality. Thetrick hereisto generate a palette that
has a sufficient mix of grayscale tones and colours. The first example uses an equal spread of colours and the second
exampl e generates an optimum pal ette based on an acquired video image, having already reserved standard VGA
colours and a selection of grayscales.

/* Set up the col ourmap */
TMG cnmap_set _type(Hyuv_i mage, TMG 332_RGB); /* even spread of colours */

/* add standard VGA col ours */
TMG cnap_set _type(Hyuv_i mage, TMG VGAL6);
TMG_ i nage_set _par anet er (Hyuv_i nage, TMG CVAP_SI ZE, 256);

/* now set sone additional grayscales */

TMG _cnmap_set _RGB_col our (Hyuv_i nage, 16, 32, 32, 32);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 17, 48, 48, 48);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 18, 64, 64, 64);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 19, 80, 80, 80);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 20, 96, 96, 96);
TMG cmap_set _RGB _col our (Hyuv_i mage, 21, 112, 112, 112);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 22, 128, 128, 128);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 23, 144, 144, 144);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 24, 160, 160, 160);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 25, 176, 176, 176);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 26, 192, 192, 192);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 27, 208, 208, 208);
TMG cnap_set _RGB _col our (Hyuv_i nage, 28, 224, 224, 224);
TMG cnmap_set _RGB_col our (Hyuv_i nage, 29, 240, 240, 240);

/* put the colourmap into the display palette */
TMG di spl ay_cmap_i nstal | (Hdi spl ayl, Hyuv_i mage);

/* display the palette - just for interest */
TMG_di spl ay_cmap(Hdi spl ayl, Hyuv_i mage, TM5 RUN);

/* now generate our YUV to paletted LUT for displaying col our inmages

* captured from Snapper-16. Note this will take several seconds,
* or we could load a previously saved one.
*/

#i fdef _SAVE LUT

TMG i mage_conv_LUT_gener at e(Hyuv_i nage, TM5 YUV422_TO PALETTED_LUT);

TMG i mage_conv_LUT_save(Hyuv_i nage, TM5 YUV422_TO PALETTED_LUT,
"convl ut. bin");

#el se

TMG i mage_conv_LUT_| oad(Hyuv_i nage, TM5 YUV422_TO PALETTED_ LUT,
"convl ut. bin");

#endi f

/* and the same for the grayscale images... */
TMG _cmap_copy(Hyuv_i mage, Hy8 image); /* give Hy8 the same col ourmap */
TMG_ i mage_conv_LUT_generat e(Hy8_i nage, TM5 Y8_TO PALETTED LUT);

This second example is basically the same, except an optimum palette is generated. When generating an optimum
palette, the image used as the reference image to generate the pal ette must contain a good mix of all the colours that
can be expected in the live application situation.

/* enter standard VGA col ours */
TMG cnap_set _type(Hyuv_i mage, TMG VGALS);

TMG Programmer’s Manual v4.0.4 Sample Applications

25

TMG_ i nage_set _par anet er (Hyuv_i nage, TMs CMAP_SI ZE, 30);

/* now set sone additional grayscales */

TMG _cmap_set _RGB_col our (Hyuv_i nage, 16, 32, 32, 32);
TMG cnmap_set _RGB_col our (Hyuv_i nage, 17, 48, 48, 48);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 18, 64, 64, 64);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 19, 80, 80, 80);
TMG _cmap_set _RGB_col our (Hyuv_i nage, 20, 96, 96, 96);
TMG cnmap_set _RGB _col our (Hyuv_i nage, 21, 112, 112, 112);
TMG _cnmap_set _RGB _col our (Hyuv_i nage, 22, 128, 128, 128);
TMG cnmap_set _RGB _col our (Hyuv_i nage, 23, 144, 144, 144);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 24, 160, 160, 160);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 25, 176, 176, 176);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 26, 192, 192, 192);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 27, 208, 208, 208);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 28, 224, 224, 224);
TMG cnap_set _RGB _col our (Hyuv_i nage, 29, 240, 240, 240);

/* grab a reference col our inmage */
SNP16_set _i nput _node(Hsnpl6, input_node);
SNP16_set _format (Hsnpl6, SNP16_FORMAT_YUV422, TMG YUV422);

/* some extra captures to allow colour lock to settle */
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);

for (strip = 0; strip < total _strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hyuv_i mage, TMG RUN);
TMG i mage_convert (Hyuv_i mage, Hi magel, TMG RGB24, 0, TMG RUN);

/* generate an optimum palette - not using the reserved
* colours already in the colourmap. The resultant

* col ourmap shall be 256 col ours.

*/

}
TMG_cmap_copy(H nagel, Hyuv_i mage);
TMG_cmap_copy(Hyuv_i mage, Hy8_i mage);

TMG _cmap_gener at e(H magel, 256, TMG RUN); /* 256 colours in total

/* Force display routines to regenerate new LUTs */
TMG_ i mage_conv_LUT_destroy(TMG_YUv422_TO PALETTED LUT);
TMG i mage_conv_LUT_destroy(TMG Y8 _TO PALETTED LUT);

/* now wite the colourmap into the display hardware */
TMG di spl ay_cmap_i nstal | (Hdi spl ayl, Hyuv_i mage);

TMG di spl ay_cmap(Hdi spl ayl, Hyuv_image, TMG RUN); /* for interest

LOOK UP TABLE EXAMPLES-USING TMG LUT FUNCTIONS

The first code fragment shows how the TMG LUT functions may be used within an application to vary the

brightness, contrast, gamma or colour balance of a colour image prior to displaying it.

Thandl e hLUT;

i 16 Brightness = TMG _DEFAULT_BRI GHTNESS;
i 16 Contrast = TMG DEFAULT_CONTRAST;

i16 Ganma = TMG _DEFAULT _GAMVA;

i16 Ri = TMG DEFAULT_I NTENSITY;
i16 G = TMG DEFAULT_I NTENSITY;
i16 Bi = TMG DEFAULT_I NTENSITY;

hLUT = TMG LUT create();

TMG Programmer’s Manual v4.0.4 Sample Applications

26

/* set up default paraneters in hLUT */

TMG_LUT _gener at e(hLUT, brightness, contrast, gamm, ri, gi, bi);

/* we may vary the LUT paraneters here... */

/* apply the software LUT function */
TMG _LUT _appl y(H nmagel, H mage2, hLUT, TMG RUN);

/* now display the result of the LUT operation */
TMG_di spl ay_i mage(Hdi spl ay, H nage2, TMG RUN);

The following example is a code fragment that uses the TMG LUT functions to generate LUTSs that are subsequently

used to program hardware LUTs contained in image acquisition hardware:

/1 Set up the hardware LUTs - using TM5 LUT functions to generate them

/1 (The parameters have been set by sliders via the applicati

on GUI)

TMG_LUT_gener at e(S24. m hLut, S24.m pLut DI g->m nBri ght nessLevel,

S24. m pLut Dl g- >m nCont r ast Level ,
S24. m pLut Dl g- >m nGammalLevel ,
S24. m pLut DI g- >m nRedl Level ,
S24. m pLut Dl g- >m nGreenl Level ,
S24. m pLut Dl g- >m nBl uel Level);

/1 Now extract pointers to the actual data

pLut Red = (ui 8) TM5 LUT_get _ptr(S24. m hLut, TMG RED);
pLut Green = (ui 8%) TMG LUT _get_ptr(S24. m hLut, TMG GREEN);
pLutBlue = (ui8*) TMG LUT_get_ptr(S24. m hLut, TMS BLUE);

/1 Set the hardware LUTs in Snhapper-24

SNP24_set _LUTs(S24. m hSnapper, SNP24_LUT_SET, SNP24_252_ RED,
SNP24_set _LUTs(S24. m hSnapper, SNP24_LUT_SET, SNP24_252_GRN,
SNP24_set _LUTs(S24. m hSnapper, SNP24_LUT_SET, SNP24_252_ BLU,

CHROMA KEYING

pLut Red) ;
pLut G een);
pLut Bl ue) ;

This example shows how to use the chroma keying functions. It shows how to calibrate to a chroma screen and then
key in abackground colour. Thisexampleisfrom thefile “chroma.c” and assumes the use of the Snapper-16 video

acquisition module:

/* This code fragment shows how to calibrate the background (screen) */

SNP16_capt ur e(Hsnp16) ;

for (strip = 0; strip < total _strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hvid_i mage, TMG RUN);
TMG _CK cal i brate(Hvid_i mage, Hchroma_key, TMG RUN);

}

key_colour = TMG GREEN, /* key to green */

This next code fragment is the inner part of the capture and display loop, using Snapper-16:

SNP16_capt ur e(Hsnp16);
for (strip = 0; strip < total_strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hvid_i mage, TMG RUN);
if ((key_to_ref_inmage == TRUE) && (chroma_keyi ng == TRUE))
#i fdef _DOS16 /* nust read fromdisk */
TMG_ i nage_set _par anet er (H nage3, TMG LI NES THI S_STRI P,
TMG i mage_set _infil enane(Hi mage3, ref _image_fil enane);

{

i nes_per_strip);

TMG Programmer’s Manual v4.0.4 Sample Applications 27

TMG i mage_r ead(Hi mage3, TMG NULL, TMG RUN);

TMG i mage_convert _to_YUV422(H nage3, H maged4, TMG YUv422, 0, TMG RUN);
#else [* 32 bit */

TMG i mage_set _paraneter (Href _i mnage, TM5 LINES TH S_STRI P,

i nes_per_strip);

TMG i mage_r ead(Href _i mage, Hi nmage4, TM5 RUN);
#endi f

TMG_CK _chroma_key(Hvi d_i mage, Hi magel, Hi mage4, key_col our, Hchrona_key,

filter, TMG RUN);

}
else if ((key_to_ref_imge == FALSE) && (chroma_keyi ng == TRUE))
TMG _CK _chroma_key(Hvi d_i mage, Hi magel, TMG NULL, key_col our,
Hchroma_key, filter, TM5G RUN);
el se
TMG i nage_nove(Hvi d_i mage, Hi magel);

TMG i mage_convert (Hi magel, Hi nmage2, TM5 RGB16, TM5 USE LUT, TMG RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hi mage2, TMG RUN);

}
TMG i nage_set _paraneter (Hvid_i nage, TM5G LINES THIS STRIP, |ines_per_strip);

TMG Programmer’s Manual v4.0.4 Function List 28

Function List

This section groups the TMG functions logically. Each function described in detail alphabetically in the next
section.

GENERAL PURPOSE FUNCTIONS

TMG_image create
TMG_image _destroy

TMG_image_copy
TMG_image_move
TMG_image is_colour

TMG_image _check
TMG_image calc total_strips
TMG_image find_file format

TMG_image malloc_a strip
TMG_image free data

TMG_image get flags
TMG_image get parameter
TMG_image get ptr
TMG_image get_infilename,
TMG_image _get_outfilename

TMG_image set flags
TMG_image set_parameter
TMG_image set ptr
TMG_image_set_infilename,
TMG_image set outfilename

PIXEL FORMAT CONVERSION FUNCTIONS (AND RELATED)

TMG_image convert

TMG_image conv_LUT_generate
TMG_image conv_LUT_destroy
TMG_image conv_LUT _load
TMG_image conv_LUT_save

IMAGE READING AND WRITING FUNCTIONS

TMG_image read
TMG_image write

COLOURMAP/PALETTE RELATED FUNCTIONS

TMG_cmap_copy
TMG_cmap _find_closest_colour
TMG_cmap_generate
TMG_cmap_get_occurrences
TMG_cmap_get RGB_colour
TMG_cmap _is grayscale
TMG_cmap_set_colour
TMG_cmap_set RGB_colour
TMG_cmap_set_type

TMG Programmer’s Manual v4.0.4 Function List 29

JPEG RELATED FUNCTIONS

TMG_JPEG_image create
TMG_JPEG_set_image
TMG_JPEG build_image

TMG_JPEG buffer_read
TMG_JPEG huffer_write

TMG_JPEG file_open
TMG_JPEG file close

TMG_JPEG file read
TMG_JPEG file write

TMG_JPEG_sequence build
TMG_JPEG_sequence _calc_length
TMG_JPEG_sequence set_start frame
TMG_JPEG_sequence extract_frame

TMG_JPEG_compress image to_image
TMG_JPEG_compress
TMG_JPEG_decompress image to_image
TMG_JPEG_decompress
TMG_JPEG_set_Quality factor
TMG_JPEG set Quantization_factor

CHROMA KEYING AND RELATED FUNCTIONS

TMG_CK create
TMG_CK_destroy
TMG_CK_chroma_key
TMG_CK calibrate

TMG_CK_set_parameter
TMG_CK_get_parameter

TMG_CK_get_component
TMG_CK_get_YUV_values,
TMG_CK_get_ YUV _values RGB

TMG_CK_generate UV_to hue LUT
TMG_CK_destroy UV _to hue LUT

LOOK UP TABLE (LUT) FUNCTIONS

TMG_LUT create
TMG_LUT_destroy
TMG_LUT _apply
TMG_LUT_generate
TMG_LUT _get_ptr

TEXT / TIMESTAMP DRAWING FUNCTIONS
TMG_draw_get_ptr

TMG_draw_text
TMG_draw_timestamp

TMG Programmer’s Manual v4.0.4 Function List 30

GENERIC DISPLAY FUNCTIONS

TMG_display_create
TMG_display_destroy

TMG_display_get flags
TMG_display_get_parameter
TMG_display_get ROI

TMG_display_set flags

TMG_display_set_parameter

TMG_display_set ROI

WINDOWSNT, 95 & 3.1 SPECIFIC DISPLAY (AND PRINTING) FUNCTIONS:
TMG_display_init

TMG_display_image

TMG _display _direct w31 [Windows 3.1]

TMG _display_set hWwhd [Windows]
TMG _display _set paint hDC [Windows]

TMG _display get hWwnd [Windows]
TMG _display get paint hDC [Windows]

TMG _display print DIB [Windows]

DOS SPECIFIC DISPLAY FUNCTIONS:
TMG_display_init
TMG_display_image

TMG_display _clear [X Windows, DOS|
TMG_display box fill [DOY
TMG_display draw_text [DOS

TMG_display cmap [DOS]
TMG_display_cmap _install [X Windows, DOS]|

TMG _display_set font [DOS

X WINDOWS SPECIFIC DISPLAY FUNCTIONS:
TMG_display_init

TMG_display_image

TMG_display_clear [XWindows, DOS]
TMG_display_cmap_install [X Windows, DOS]
TMG_display_set_Xid [X Windows]

MacOS SPECIFIC DISPLAY FUNCTIONS:
TMG_display_init

TMG_display_image

TMG_display_set mask [MAC]

TMG Programmer’s Manual v4.0.4 Function List 31

IMAGE PROCESSING FUNCTIONS

TMG_IP_crop
TMG_IP_extract_region
TMG_IP_filter_3x3
TMG_IP_generate averages
TMG_IP_histogram clear
TMG_IP_histogram filter
TMG_IP_histogram_generate
TMG_IP_histogram_match
TMG_IP_image insert
TMG_IP_mirror
TMG_IP_mirror_image
TMG_IP_pixel_rep
TMG_IP_rotate image
TMG_IP_subsample
TMG_IP_threshold_grayscale

BAYER PROCESSING FUNCTIONS

TMG_BAY_RGB24_to RGGB32
TMG_BAY_RGGB32_map_to_Y8,
TMG_BAY_RGGB32_map_to_RGB24
TMG_BAY_RGGB32_to BGRX32,
TMG_BAY_RGGB32_to_RGB16

SPECIAL PROCESSING FUNCTIONS

TMG_SPL_2fields to frame
TMG_SPL field_to frame
TMG_SPL_Data32 to Y8
TMG_SPL_XXXX32 to Y8

TMG_SPL_HS _to RGB_pseudo_colour
TMG_SPL_YUV422 to RGB_pseudo_colour

WAVELET RELATED FUNCTIONS
TMG_WVLT image create
TMG_WWLT image destroy
TMG_WWLT buffer_read
TMG_WWLT buffer_write
TMG_WWLT file read
TMG_WNVLT file write

TMG_WVLT_compress
TMG_WWLT_decompress
TMG_WWLT set Quality factor
TMG_WWLT set_subbands

The functions are described in a phabetical order in the following pages.

TMG Programmer’s Manual v4.0.4 Function List 32

THIS PAGE IS INTENTIONALLY BLANK

TMG Programmer’s Manual v4.0.4 TMG_BAY_RGB24_to RGGB32 33

TMG_BAY_RGB24 to RGGB32

USAGE
Terr TMG_BAY_RGB24 to RGGB32(Thandle Hin_image, Thandle Hout_image, uil6 TMG_action)

ARGUMENTS

Hin_image Handle to the input TMG_RGB24 image.
Hout_image Handle to the output TMG_RGGB32 Bayer encoded image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function generates a Bayer encoded image. It outputs only the Red, Green or Blue value from each input
pixel according to the following Bayer encoding pattern.

Thefirst output line (i.e. 0 and all evenlines) is RGRGRGRG...
The second output line (i.e. 1and al odd lines)is G B GB GB GB ...

RGB is mapped to either R, G or B, depending on the pixel location. This function outputs an 8 hit greyscale
Bayer encoded picturein a TMG_RGGB32 format image, suitable for decoding with
TMG_BAY_RGGB32_to_ BGRX32 or TMG_BAY_RGGB32_to _RGB16.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to generate an 8 bit greyscale Bayer encoded image:

TMG_ i mage_r ead(hl nl mage, TMG _NULL, TMG _RUN);
TMG_i mage_convert (hl nl mage, hRGBI nage, TMG RGB24, 0, TMG_RUN);
TMG_BAY_RGB24_t o_RGEB32(hRGBI mage, hQutl nmage, TMG _RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_BAY_RGGB32_map_to_Y8,
TMG_BAY_RGGB32_map_to_RGB24,
TMG_BAY_RGGB32_to_BGRX32,
TMG_BAY_RGGB32_to_RGB16.

TMG Programmer’'sManual v4.0.4 TMG_BAY_RGGB32 map to Y8, 34
TMG_BAY_RGGB32 map_to RGB24

TMG_BAY_RGGB32_map_to_Y8,
TMG_BAY_RGGB32_map_to_RGB24

USAGE
Terr TMG_BAY_RGGB32 to_Y8(Thandle Hin_image, Thandle Hout_image, uil6 TMG_action)

Terr TMG_BAY_RGGB32_map _to RGB24(Thandle Hin_image, Thandle Hout_image, uil6é TMG_action)

ARGUMENTS

Hin_image Handle to the input TMG_RGGB32 Bayer encoded image.
Hout_image Handle to the output TMG_Y8 or TMG_RGB24 image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

These functions map a TMG_RGGB32 Bayer encoded image to either a greyscale or a colour image suitable
for displaying, saving etc.

TMG_BAY_RGGB32_map to Y8 : Each 8-hit input pixel (can be R, G or B) is copied to an 8 hit output pixel
Y. This function changes the pixel format to TMG_Y8.

TMG_BAY_RGGB32_map to RGB24 : Each 8-bit input pixel (can be R, G or B) is used to generate a 24 bit
output pixel (either ROO, 0G0 or 00B), depending on itslocation, according to the following Bayer encoding
pattern.

Thefirst output line (i.e. 0 and all even lines) is RGRGRGRG ...
The second output line (i.e. Land al odd lines)is G B GB GB GB ...

Thisfunction is useful for visualising the Bayer encoding scheme, as the encoded colours are directly visible
in the output TMG_RGB24 format image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how to generate a Bayer encoded image, and display it in colour:
TMG i mage_r ead(hl nl mage, TMG NULL, TMG RUN);
TMG i mage_convert (hl nl mage, hRGBI nage, TMG RGB24, 0, TMG RUN);
TMG_BAY_RGB24_t o_RGGEB32(hRGBI mage, hRGGBI mage, TMG RUN);
TMG_BAY_RGGB32_nap_t o_RGB24(hRGGEBI mage, hQutl mage, TMG RUN);
TMG_di spl ay_i mage(hDi spl ay, hCutl mage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_BAY_RGB24_to RGGB32,
TMG_BAY_RGGB32_to BGRX32,
TMG_BAY_RGGB32_to_RGB16.

TMG Programmer’s Manual v4.0.4 TMG_BAY_RGGB32_to BGRX32, 35
TMG_BAY_RGGB32 to RGB16

TMG_BAY_RGGB32_to BGRX32,
TMG_BAY_RGGB32_to_RGB16

USAGE

Terr TMG_BAY_RGGB32_to BGRX32(Thandle Hin_image, Thandle Hout_image, uil6 wDecodeScheme,
uil6 wPixelCol, uil6 TMG_action)

Terr TMG_BAY_RGGB32_to RGB16(Thandle Hin_image, Thandle Hout_image, uil6 wDecodeScheme,
uil6 wPixelCol, uil6 TMG_action)

ARGUMENTS
Hin_image Handle to the input TMG_RGGB32 Bayer encoded image.
Hout_image Handle to the output TMG_BGRX32 or TMG_RGB16 decoded image.
wDecodeScheme 1, 2 or 3 — selects one of three decoding schemes.
wPixel Col 1, 2, 3 or 4 — selects the colour of the top left pixel.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function reconstructs either aTMG_BGRX32 or a TMG_RGB16 image from the following 8 bit
greyscale Bayer encoding pattern. If we have a RED top left pixel (for example) :-

Thefirst input line (i.e. 0 and al even lines) is RGRGRGRG..
The second input line (i.e. 1 and all odd lines) is GBGBGBGB ..

Decode scheme 1) applies a nearest neighbour (pixel duplication) algorithm. One colour is already present for
each output pixel. The missing two colours for each output pixel are copied from either the pixel to the left,
the pixel above, or the pixel above-left (with appropriate modification if we are dealing with the first line or
the left hand column of pixels).

Decode scheme 2) applies a simple averaging algorithm. Missing Green pixels are generated from the average
of the four Green pixels above, below, left and right. Missing Red and Blue pixels are generated from either
the average of the four pixels above-left, above-right, below-left and bel ow-right; or the two pixels left and
right; or the two pixels above and below.

Decode scheme 3) as decode scheme 2) but applies a median filter instead of averaging four pixels. Gives
better edges and reduced ‘ zipper effect’.

The wPixel Col parameter identifies which of four possible Bayer colour configurationsis present in the

encoded image :-
1=RGRG 2=GRGR 3=GBGB 4 =BGBG
GBGB BGBG RGRG GRGR
RGRG GRGR GBGB BGBG
GBGB BGBG RGRG GRGR
RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

TMG Programmer’s Manual v4.0.4 TMG_BAY_RGGB32_to BGRX32, 36
TMG_BAY_RGGB32 to RGB16

EXAMPLES

The following code fragment shows how to decode an 8 bit Bayer image to a colour image, and display it:

/* hlnlmage contains an 8 bit Bayer encoded image — we’'l|l decode it
* to colour TMG BGRX32 and display it.
>/
TMG_ i mage_r ead(hl nl mage, TMG _NULL, TMG _RUN);
TMG_i nage_set _par anet er (hl nl rage, TMG Pl XEL_FORMVAT, TMG _RGGB32);
TMG_BAY_RGGB32_t o_BGRX32(hl nl mage, hQutlnmage, 3, 1, TMG RUN);
TMG_di spl ay_i mage(hDi spl ay, hQutlmage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_BAY_RGGB32_map_to_Y8,
TMG_BAY_RGGB32_map_to_RGB24,
TMG_BAY_RGB24_to RGGB32.

TMG Programmer’s Manual v4.0.4 TMG_CK_cdibrate

37

TMG_CK_calibrate

USAGE
Terr TMG_CK_calibrate(Thandle Hin_image, Thandle Hchroma_key, ui1l6 TMG_action)

ARGUMENTS

Hin_image Handle to the input image.
Hchroma_key Handle to achromakeying structure.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.

DESCRIPTION

This function generates suitable values for the chroma keying structure, referenced by Hchroma_key. It finds

the average hue and luminance of the image and assignsit to the chroma keying structure.

To use this function, remove al subject material from in front of the chroma screen and capture an image. It

is very important that the chroma screen fills the whole image and that nothing else isin the view of the
camera. Also suitable lighting must be used - for example tungsten studio lights or diffused daylight.

Fluorescent lights will not work.

The hue tolerance is set to 20 degrees and the luminance tolerance set to 64. (This means+ 20 and + 64

respectively.)

Note that this function may well be useful for applications simply requiring the average luminance or huein
an image (and not needing any chroma keying functionality). TMG_CK_get_parameter can be used to read

the actual settings generated.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following exampl e shows how to find the average brightness and hue in a colour image:

Thandl e hChr omaKey;
Thandl e hl mage, hYUVI mage;

hChr omaKey = TMG CK create();
hl mage = TMG_ i nage_create();
hYUVI mage = TMG i mage_create();

/* sky.tif is a 24 bit RG col our image */

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG_ i mage_set _par anet er (hl mage, TMG _HElI GHT, TMS_AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG i mage_convert (hl mage, hYWVI mage, TMG YWv422, 0, TMG RUN);
TMG _CK cal i brat e(hYUVI mage, hChr omaKey, TM5 RUN);

/* now we can read the average brightness and hue (if we want)*/
Aver ageLuma = (ui 16) TMG CK _get _par anet er (hChr omaKey, TMG LUMA);
Aver ageHue = (ui 16) TMG _CK get _paranet er (hChr omaKey, TMG HUE);

See also the extended examples in the “ Sample Applications’ section.

TMG Programmer’s Manual v4.0.4 TMG_CK_cdibrate 38

BUGS/NOTES
Hin_image must be a 16 bit YUV 4:2:2 image (TMG_YUV422).

SEE AL SO
TMG_CK_create, TMG_CK_get_parameter.

TMG Programmer’s Manual v4.0.4 TMG_CK_chroma_key 39

TMG_CK_chroma_key

USAGE

Terr TMG_CK_chroma_key(Thandle Hin_image, Thandle Hout_image, Thandle Href image, uil6 colour,
Thandle Hchroma_key, uil6 filter, uil6 TMG_action)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to the output image.
Href_image Handle to an image to key to (or TMG_NULL)

colour The colour to key to.
Hchroma_key Handle to achromakeying structure.
filter Either TRUE or FALSE - selects horizontdl filtering.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function performs chroma keying on the input image, Hin_image, and generates a chroma keyed output
image, Hout_image. If Href_imageis TMG_NULL, then the function will key to the colour defined by
colour. colour can be one of TMG_RED, TMG_GREEN etc - see TMG_cmap_set_colour for a complete list
of available colours.

The chroma keying structure, reference by Hchroma_key, contains information about the hue (angle), hue
tolerance, luminance and luminance tolerance. For each pixel in the input image, if its hue and luminance are
within the limits defined by Hchroma_key, the key colour (or reference image if defined) will be used,
otherwise the input image will be used to generate the output image.

The image type for the input image and optional reference image must be TMG_YUV422. Also the reference
must be the same size (in terms of width and height) as the input image. TMG_image_convert (to
TMG_YUV422) can be used to generate a reference image from a 24 bit RGB image if required.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES
Hin_image and Href_image (if used) must both be a 16 bit YUV 4:2:2 image (TMG_YUV422).

SEE ALSO
TMG_CK create, TMG_CK_calibrate, TMG_CK_set_parameter.

TMG Programmer’s Manual v4.0.4 TMG_CK_create 40

TMG_CK_create

USAGE
Terr TMG_CK_create()

ARGUMENTS

None.

DESCRIPTION

Thisfunction creates a Tchroma_key structure by the use of malloc, and returns a handle to the structure. The
contents of the chroma keying structure is shown below along with their default initialization values. (Refer
to thefile “tmg.h” for the actual structure definition.)

ui 16 hue = 340; /* typical blue chroma screen hue */
ui 16 hue_tol = 20; /* +/- 20 degrees */
ui 16 luma = 120; /* suitable | um nance val ue and tol erance */

ui 16 luma_tol = 64;

The handle to this structure is used by the chroma keying functions.

RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates a chroma keying structure and gets a handle to it:
Thandl e hChr omaKey;

if (ASL_is_err(hChromaKey = TMG CK create())
printf(“Failed to create LUT");

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_CK _destroy, TMG_CK_chroma_key, TMG_CK_set_parameter.

TMG Programmer’'sManual v4.0.4 TMG_CK_destroy 41

TMG_CK_destroy

USAGE
Terr TMG_CK_destroy(Thandle Hchroma._key)

ARGUMENTS
Hchroma_key Handleto achromakeying structure or TMG_ALL_HANDLES

DESCRIPTION
This function destroys a chroma keying structure by freeing all the memory associated with that structure.

If the parameter TMG_ALL_HANDLESIis used, all previoudly created chroma keying structures are destroyed
and their associated handles freed.

TMG_image destroy(TMG_ALL_HANDLES) will destroy all TMG chroma keying structures by calling
TMG_CK _destroy for al chromakey handles. Thisisa convenient way of destroying everything with just
one function call.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys a previously created chroma keying structure;
Thandl e hChr omaKey;

/* destroy the chroma keying structure */
TMG_CK_dest r oy(hChr onaKey) ;

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_CK create, TMG_image destroy.

TMG Programmer’'sManual v4.0.4 TMG_CK_destroy UV_to hue LUT 42

TMG_CK _destroy UV_to _hue LUT

USAGE
Terr TMG_CK_destroy UV_to_hue LUT()

ARGUMENTS

None

DESCRIPTION

This function destroys the UV to hue LUT previously generated using the function
TMG_CK_generate UV_to hue LUT

TMG_image destroy(TMG_ALL_HANDLES) destroys all TMG structures including this UV to hue LUT and
may therefore be a more convenient way of destroying this LUT.

Note that this LUT is not related to the TMG_LUT suite of functions or the TMG image conversion LUTS.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys the UV to LUT structure:

/* destroy the W to hue LUT */
TMG_CK destroy_UV_to_hue_ LUT();

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_CK_generate UV_to hue LUT, TMG_image_destroy.

TMG Programmer’s Manual v4.0.4 TMG_CK_generate UV_to_hue LUT 43

TMG_CK_generate_UV _to_hue LUT

USAGE
Terr TMG_CK_generate UV_to hue LUT()

ARGUMENTS

None

DESCRIPTION

This function generates a LUT to convert from UV (i.e. the colour components of a YUV 4:2:2 image) to hue
(i.e. the angle representing the colour). ThisLUT isused by the functions TMG_CK_chroma_key and
TMG_CK_cdlibrate. If the LUT isnot generated when these functions are called, it is automatically
generated. Thisfunction is sometimes useful to generate the LUT in advance of actually using it (so asto
savetime).

The memory used by the LUT is dynamically allocated when the LUT is generated.
Note that this LUT is not related to the TMG_LUT suite of functions or the TMG image conversion LUTS.

TMG_CK_destroy_UV_to_hue LUT can be used to destroy this LUT (i.e. free the allocated memory), but
TMG_image destroy(TMG_ALL_HANDLES) will automatically destroy all TMG structuresincluding this
LUT.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment generates the UV to hue conversion LUT:

/* Generate the LUT */
if (ASL_is_err(TM5 CK generate_WV_to_hue_LUT()))
printf(“Failed to generate LUT");

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

The LUT sizeis 64K words (16 bit words) under all operating systems, except that under Windows 3.1, the
LUT sizeis 64K bytes, which limits the hue resolution of the output to two degrees instead of one.

There are no known bugs.

SEE ALSO

TMG_image convert, TMG_image conv_LUT destroy, TMG_image conv_LUT save,
TMG_image conv_LUT load.

TMG Programmer’s Manual v4.0.4 TMG_CK_get_component 44

TMG_CK_get_component

USAGE
Terr TMG_CK_get_component(ui16 colour, uil6 component)

ARGUMENTS
colour Colour (e.g. TMG_RED, TMG_GREEN etc).
component Parameter to select - one of Y, U or V components
DESCRIPTION

Thisfunction returnsthe Y, U or V component value of a particular colour. See TMG_cmap_set_colour for a
complete list of available colours.

TheY output has arange of 16..255. The U and V outputs have arange of 0..255. This YUYV format is
identical to the output of Snapper-16 (composite/S-Video acquisition module). See TMG_image_convert for
adescription of the conversion formula.

Thisfunction calls TMG_CK_get YUV_valuesinternally (whichin turn calls
TMG_CK_get YUV _values RGB).
RETURNS

TheY, U or V component as the lower 8 bits of the 32 bit return value, otherwise an error return as defined in
the Error Returns section at the start of this manual.

EXAMPLES

The following exampl e shows how to find the luminance component of the VGA defined colour blue.
YConp = TM5_CK _get _conponent (TMG BLUE, TMG_Y_COVPONENT) ;

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_CK_get_YUV_values,
TMG_CK_get YUV _values RGB.

TMG Programmer’s Manual v4.0.4 TMG_CK_get_parameter 45

TMG_CK_get_parameter

USAGE
Terr TMG_CK_get_parameter(Thandle Hchroma_key, uil6 parameter)

ARGUMENTS
Hchroma_key Handleto achromakeying structure.
parameter The parameter type to be read.
DESCRIPTION

This function returns selected parameters from the chroma keying structure referenced by Hchroma_key.
Each parameter is described below:

TMG_HUE Return the current hue.

TMG_HUE TOL Return the current hue tolerance.
TMG_LUMA Return the current luminance.
TMG_LUMA_TOL Return the current luminance tolerance.

RETURNS
The selected parameter in the lower 16 bits of the return value, otherwise an error return as defined in the
Error Returns section at the start of this manual.

EXAMPLES

The following code reads the current hue setting (without error checking):
Hue = ASL_get _ret(TMG CK set _paranet er (hChromaKey, TMG HUE));

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_CK _create, TMG_CK_set_parameter.

TMG Programmer’s Manual v4.0.4 TMG_CK_get YUV _values,

TMG_CK_get_YUV_values RGB

46

TMG_CK_get_YUV_values,
TMG_CK_get_YUV_values_RGB

USAGE

ui32 TMG_CK_get YUV values(uil6 colour)
ui32 TMG_CK get YUV values RGB(ui8red, ui8 green, ui8 blue)

ARGUMENTS

colour
red
green
blue

DESCRIPTION

Colour (e.g. TMG_RED, TMG_GREEN etc).
Red value 0..255.

Green value 0..255.

Blue value 0..255.

TMG_CK_get YUV valuesreturnsthe YUV values of a particular colour defined by for example
TMG_RED. See TMG_cmap_set_colour for acomplete list of available colours.

TMG_CK_get YUV values RGB returnsthe YUV values for a particular colour defined by individual red,

green and blue intensities.

TheY output has arange of 16..255. The U and V outputs have arange of 0..255. ThisYUYV format is

identical to the output of Snapper-16 (composite/S-Video acquisition module). See TMG_image_convert for
adescription of the conversion formula.

RETURNS

A 32 hit unsigned integer is returned with Y in the lower 8 bits, U in bit positions 8 to 15, and V in bit

positions 16 to 23.

EXAMPLES

The following exampl e shows how to find the luminance component of the colour defined by the following

intensities: red 240, green 100, blue 220:

YWConp = TMG_CK get _YUV_val ues_RGB(240, 100, 220);
YConp = (ui 8) YUVConp;

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_CK_get_component.

TMG Programmer’s Manual v4.0.4 TMG_CK_set_parameter 47

TMG_CK_set_parameter

USAGE
Terr TMG_CK_set_parameter(Thandle Hchroma_key, uil6 parameter, uil6 value)

ARGUMENTS
Hchroma_key Handleto achromakeying structure.
parameter The parameter type to be set.
value The actual required value.
DESCRIPTION
This function sets parameters in the chroma keying structure referenced by Hchroma_key. Each parameter is
described below:
TMG_HUE Set the desired hue in degrees from 0 to 359.
TMG_HUE _TOL Set the hue tolerance - atypical value for areasonable quality chroma screen would be
20.
TMG_LUMA Set the desired luminance or brightness from 0 to 255.

TMG_LUMA _TOL Set the luminance tolerance - atypical value would be 64.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment sets values for atypical blue chroma keying screen:

/* Set values for a typical blue chroma screen */
TMG_CK_set _par anet er (hChr onaKey, TMG HUE, 340);
TMG_CK_set _par anet er (hChronmaKey, TM5 HUE TOL, 20);
TMG_CK _set _par anet er (hChr omaKey, TMG LUMA, 120);
TMG_CK_set _par anet er (hChr onaKey, TMG LUVA TOL, 64);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_CK_create, TMG_CK_get_parameter.

TMG Programmer’s Manual v4.0.4 TMG_cmap_copy 48

TMG_cmap_copy

USAGE
Terr TMG_cmap_copy(Thandle Hin_image, Thandle Hout_image)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
DESCRIPTION
This function copies the colourmap from the input image, Hin_image, to the output image, Hout_image. This
function is sometimes useful when using TMG_cmap_generate.
RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment copies the colourmap after generating an optimum colourmap:

TMG _cmap_gener at e(hl mage, 256, TMG_RUN);
/* hSrclmage is the first function used in a chain el sewhere */
TMG _cmap_copy(hl mage, hSrcl mage) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_generate.

TMG Programmer’s Manual v4.0.4 TMG_cmap_generate 49

TMG_cmap_generate

USAGE
Terr TMG_cmap_generate(Thandle Himage, uil6 num colours, uil6 TMG_action)

ARGUMENTS
Himage Handle to an image.
num_colours The number of final colours (including any reserved colours).
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function generates an optimum colourmap for Himage. Himage must be a 24 bit colour image (type
TMG_RGB24) or an 8 hit grayscale image (type TMG_Y8). The function analyses the number and type of
colours/gray levels using a proprietary histogram technique and generates a new colourmap for Himage.

The function uses the input parameter, num_colours, to decide how many colours entries the resulting
colourmap will have. The size and contents of Himage' s colourmap on entry to the function determines how
many coloursto reserve. For example, 16 colours may be set in colourmap locations 0..15 and the colourmap
size setto 16. Then TMG_cmap_generate would be called with 256 colours as a parameter, which would
mean 240 colours optimised to the image would be stored in the remainder of the locations.

Note that the whole image must be processed before the colourmap can be used by other functions, such as
TMG_image convert. Inother wordsif theimage is being processed in strips, the strip loop generating the
colourmap must compl ete before the (separate) strip loop that uses the colourmap starts.

A colourmap can be saved and re-loaded by simply saving the image as a paletted image - this will force the
colourmap to be saved with the image (and re-loaded on read).

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG _image conv_LUT generate, TMG_image convert, TMG_cmap_set_type,
TMG_cmap_get_occurrences.

TMG Programmer’'sManual v4.0.4 TMG_cmap_get_occurrences 50

TMG_cmap_get_occurrences

USAGE
ui32 TMG_cmap_get occurrences(Thandle Himage, uil6 index)

ARGUMENTS

Himage Handle to an image.

index Index into the Himage' s colourmap (0..255).
DESCRIPTION

This function returns the number of occurrences of a particular colour (or gray level) referenced by index,
where index is the location of the colour in Himage's colourmap. Note that for grayscal e images, generating
a colourmap and then using this function is a convenient way of returning histogram information about the
image. (For grayscale images the index value is the same as the actual gray level intensity aslong asthe
colourmap is allowed to have 256 entries.)

This function can only be used after TMG_cmap_generate has been used on Himage.

RETURNS

The number of occurrences of a particular colour as a 32 bit word.

EXAMPLES

The following exampl e shows how to generate a colourmap for an image and then print out a histogram of the
colour index versus the number of occurrences:

ui 16 n;
ui 32 num

TMG i nage_set _paranet er (H nage, TMG CMAP_SI ZE, 0); /* none reserved */
TMG _cmap_gener at e(H mage, 256, TMG_RUN);

printf(“H stogram of 256 npbst popul ar col ours:\n");
for (n = 0; n < 256; n++) {

num = TM5 crmap_get _occurrences(H rmage, n);

printf(“lndex % occurred %d times\n”, (int) n, (long) num;
}

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_generate, TMG_cmap_get RGB_colour, TMG_cmap find_closest _colour.

TMG Programmer’s Manual v4.0.4 TMG_cmap_get RGB_colour 51

TMG_cmap_get RGB_colour

USAGE
ui32 TMG_cmap_get RGB_colour(Thandle Himage, uil16 index)

ARGUMENTS

Himage Handle to an image.

index Index into the Himage' s colourmap (0..255).
DESCRIPTION

This function returns the RGB value of the colour at position index in Himage's colourmap. Thered, green
and blue component are packed into a 32 bit return value such that red occupies bits 16..23, green 9..15 and
blue0..7.

RETURNS

A 32 bit unsigned integer is returned with blue in the lower 8 bits, green in bit positions 8 to 15, and red in bit
positions 16 to 23.

EXAMPLES

The following example shows how to read a colour from an image's col ourmap:

ui 32 PackedCol our;
ui 8 red, grn, blu;

PackedCol our = TMG crmap_get RGB_col our (H mage, 0);

red = (ui 8) (PackedCol our >> 16);
grn = (ui8) (PackedCol our >> 8);
blu = (ui8) PackedCol our;

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_set RGB_colour.

TMG Programmer’s Manual v4.0.4 TMG_cmap _find_closest_colour 52

TMG_cmap_find_closest_colour

USAGE
ui8 TMG_cmap_find_closest_colour(Thandle Himage, ui8red, ui8green, ui8 blue)

ARGUMENTS
Himage Handle to an image.
red Red intensity of input colour.
green Green intensity of input colour.
blue Blue intensity of input colour.
DESCRIPTION

This function returns the index of the closest colour in Himage's colourmap to the input colour defined by the
intensities of red, green and blue. The least squares algorithm isused (it usesaLUT to do the multiplication
soitsrelatively fast).

RETURNS

The index of the closest colour as an 8 bit unsigned integer.

EXAMPLES

The following example shows how to find the nearest colour to a fully saturated red:

ui 8 i ndex;
ui 32 PackedCol our;
ui 8 red, grn, blu;

index = TMG cmap_find_cl osest _col our (H mage, 255, 0, 0);
PackedCol our = TMG crmap_get RGB_col our (H mage, (ui 16) index);

red = (ui 8) (PackedCol our >> 16);
grn = (ui8) (PackedCol our >> 8);
blu = (ui 8) PackedCol our;

printf(“Cosest colour is R %, G %, B %", (int) red, (int) grn, (int)
bl u);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_get RGB_colour, TMG_cmap_generate.

TMG Programmer’s Manual v4.0.4 TMG_cmap_is grayscale

53

TMG_cmap_is_grayscale

USAGE
Thboolean TMG_cmap_is_grayscale(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns TRUE if Himage's colourmap contains only gray levels.

RETURNS
Returns TRUE or FALSE.

EXAMPLES
The following code fragment reads an image and determinesiif it is colour or not (thisis actually a dightly
simplified version of TMG_image is colour):

TMG_ i nage_set _infil enane(hl mage, “sky.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
if (TMG_i mage_get _paraneter (hl mage, TMG Pl XEL_FORMAT) == TMG_PALETTED)
if (TMG crmap_is_grayscal e(hl nage) == TRUE)
printf(“We have a grayscal e paletted i nage”);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image is colour.

TMG Programmer’s Manual v4.0.4 TMG_cmap_set_colour

54

TMG_cmap_set_colour

USAGE
Terr TMG_cmap_set_colour(Thandle Himage, uil6 index, uil6 colour)

ARGUMENTS
Himage Handle to an image.
index The colourmap entry.
colour The colour, which can be one of the following:
TMG_BLACK TMG_GRAY
TMG_BLUE TMG_LIGHT_BLUE
TMG_GREEN TMG_LIGHT_GREEN
TMG_CYAN TMG_LIGHT_CYAN
TMG_RED TMG_LIGHT_RED
TMG_MAGENTA TMG_LIGHT_MAGENTA
TMG_YELLOW TMG_LIGHT_YELLOW
TMG_WHITE TMG_LIGHT_WHITE
DESCRIPTION

This function sets a colour in Himage's colourmap using one of the above colours. The non-light colours
have individual colour intensities of 152 and the light colours have intensities of 255.

Internally this functions calls TMG_cmap_set RGB_colour.
Thisfunction is generally used in conjunction with TMG_cmap_generate.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment sets three colours:

TMG _cmap_set _col our (hl mage, 0, TMG LI GHT_RED);
TMG _cnmap_set _col our (hl mage, 1, TMG LI GHT_WH TE);
TMG _cnap_set _col our (hl mage, 2, TMG LI GHT_BLUE);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_set RGB_colour, TMG_cmap_set_type.

TMG Programmer’s Manual v4.0.4 TMG_cmap_set RGB_colour 55

TMG_cmap_set RGB_colour

USAGE
Terr TMG_cmap_set RGB_colour(Thandle Himage, uil6 index, ui8red, ui8 green, ui8 blue)

ARGUMENTS
Himage Handle to an image.
index The colourmap entry.
red Thered intensity (0..255).
green The green intensity (0..255).
blue The blue intensity (0..255).
DESCRIPTION

This function writes an individual colour into Himage's colourmap. It isgenerally used in conjunction with
TMG_cmap_generate.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets three colours:

TMG _cnap_set _RGB_col our (hl nage, 0, 255, 0, 0);
TMG _cnap_set _RGB _col our (hl mage, 1, 255, 255, 255);
TMG _cnap_set _RGB _col our (hl nage, 2, 0, 0, 255);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap_set colour, TMG_cmap_set_type, TMG_cmap_generate.

TMG Programmer’s Manual v4.0.4 TMG_cmap_set_type 56

TMG_cmap_set_type

USAGE
Terr TMG_cmap_set_type(Thandle Himage, uil6 type)

ARGUMENTS
Himage Handle to an image.
type The type of colourmap/palette required. This can be one of the following:
TMG_VGA16, TMG_GRAYSCALE_RAMP, TMG_332_RGB, TMG_BLACK.
DESCRIPTION

This function writes a colourmap into Himage' s colourmap. The colourmap sizeis automatically set to 16 for
TMG_VGAL16, and 256 for TMG_GRAYSCALE_RAMP, TMG_332_RGB and TMG_BLACK. The colourmap
types are as follows:

TMG_VGA16 The palette is set to a size 16, consisting of a standard DOS or Windows 3.1
VGA paette. That istheentriesOto 15 are as follows:
0 Black 8 Gray ("Light Black™)
1 Blue 9 LightBlue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 LightRRed
5 Magenta 13 Light Magenta
6 Yellow 14 Light Yellow
7 White 15 Light White
TMG_332_RGB A 256 entry colourmap, based on RGB 332. That is, it isadirect

colourmap, such that each entry is represented by three bits of red, three bits
of green and two bits of blue, with red at the most significant end of the

byte.

TMG_GRAYSCALE RAMP A 256 entry colourmap, where each entry represents a grayscale from 0 to
255, with entry 0 having value O, linearly increasing to entry 255 having
value 255.

TMG_BLACK Thissimply clears down al the entries to black and automatically sets the
colourmap size to 256.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets the first 16 colourmap entries to the standard VGA set of colours:
TMG _cnap_set _type(hl mage, TMG VGALG);

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.4 TMG_cmap_set_type 57

SEE AL SO
TMG_cmap_set RGB_colour, TMG_cmap_generate.

TMG Programmer’s Manual v4.0.4 TMG _display_box fill [DOS] 58

TMG_display_box_fill [DOS]

USAGE
Terr TMG_display_box_fill(Thandle Hdisplay, uil6 colour, i16 *roi)

ARGUMENTS
Hdisplay Handle to a display.
colour Colour of the box.
roi “ROI” array with four elements, with #defined element names:
ASL_ROI_X START Horizontal start position (0 = |eft of screen).
AS._ROI_Y_START Vertical start position (0 = bottom of screen).
ASL ROI_X LENGTH Horizontal width of box.
ASL_ROI_Y LENGTH Vertical height of box.
DESCRIPTION
This function draws a box on the screen in one of the following solid colours (the Flash Graphics definitions
are used):
FG_BLACK FG_GRAY
FG_BLUE FG_LIGHT_BLUE
FG_GREEN FG_LIGHT_GREEN
FG_CYAN FG_LIGHT_CYAN
FG_RED FG_LIGHT_RED
FG_MAGENTA FG_LIGHT_MAGENTA
FG_YELLOW FG_BROWN
FG_WHITE FG_LIGHT _WHITE
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES

See the example for TMG_display_draw_text [DOS]

BUGS/NOTES

Thisfunction is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples’ at the start of this manual.

If this function is used in paletted display modes, the first 16 colours need to be reserved for the standard set
of VGA colours (see TMG_cmap_set_type), otherwise the colour of the drawn boxesis unlikely to be as
expected!

There are no known bugs.

SEE ALSO
TMG _display clear [X Windows, DOS.

TMG Programmer’s Manual v4.0.4 TMG _display clear [X Windows, DOS] 59

TMG_display_clear [X Windows, DOS]

USAGE
Terr TMG_display_clear(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to adisplay.

DESCRIPTION
Thisfunction clears the display to black.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example for TMG_display_draw_text [DOS].

BUGS/NOTES

Thisfunction is only supported under DOS and X Windows. Under DOS the Flash Graphicslibrary is
required. See the section on “Image Display Functions and Examples’ at the start of this manual.

Under DOS, if thisfunction is used in paletted display modes, the first 16 colours need to be reserved for the
standard set of VGA colours (see TMG_cmap_set_type), otherwise the display may not be cleared to black.

There are no known bugs.

SEE ALSO
TMG_display_box_fill [DOS.

TMG Programmer’s Manual v4.0.4 TMG _display cmap [DOS] 60

TMG_display_cmap [DOS]

USAGE
Terr TMG_display_cmap(Thandle Hdisplay, Thandle Himage, ui1l6 TMG_action)

ARGUMENTS
Hdisplay Handle to adisplay.
Himage Handle to an image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION
Thisfunction displays Himage's colourmap. Often it can be useful to see the colourmap during code
development.
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES

The following code sets up a colourmap, installsit in the display hardware and displaysit:

/* Setup the colourmap - note we nust reset the size to 256 as TMG _VGA16
*will set it to a size of 16.
>/

TMG cnap_set _type(hl mage, TMG 332_RGB);

TMG _cnap_set _type(hl mage, TMG VGALG);

TMG_ i nage_set _par anet er (hl nage, TMG_CVAP_SI ZE, 256);

/* initialise the display and wite the colourmap to the hardware */
TMG di splay_init (hDi splay, TMG 800x600x8_RGB); /* pal etted node */
TMG _di splay_cmap_i nstal | (hDi spl ay, hlnage);

/* finally display the col ourmap */
TMG_di spl ay_cmap(hDi spl ay, hlmage, TMG _RUN);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples’ at the start of this manual.

There are no known bugs.

SEE ALSO
TMG _display_cmap _install, TMG_cmap_generate.

TMG Programmer’'s Manual v4.0.4 TMG _display_cmap install [X Windows, DOS] 61

TMG_display_cmap_install [X wWindows, DOS]

USAGE
Terr TMG_display_cmap_install(Thandle Hdisplay, Thandle Himage)

ARGUMENTS

Hdisplay Handle to adisplay.

Himage Handle to the image containing the desired col ourmap.
DESCRIPTION

This function writes Himage' s colourmap into the display’ s hardware colourmap (or palette). The display
must be in a paletted mode for the function to work.

Under DOS, the colourmap will be immediately applied.
Under X Windows, the colourmap is applied when the window with which its associated with receivesinput
focus (i.e. when the mouse pointer is moved into it).

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example code for TMG_display_cmap [DOS.

BUGS/NOTES

Under DOS, this function requires the Flash Graphics library. See the section on “Image Display Functions
and Examples’ at the start of this manual.

There are no known bugs.

SEE ALSO
TMG_display _init, TMG_display cmap [DOS], TMG_cmap_generate.

TMG Programmer’s Manual v4.0.4 TMG_display create 62

TMG_display_create

USAGE
Terr TMG_display_create()

ARGUMENTS

None.

DESCRIPTION

Thisfunction creates an internal display structure and returns a handle as areference to it. The display
structure referenced by the display handle stores information such as the screen dimensions, colour depth,
associated window etc. A new display handle would be created for each display or window within adisplay.
For multiple paint areas within one window, again a new display handle would be created and initialised.

RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates a display structure and gets ahandleto it:
Thandl e hDi spl ay; /* Handl e to display structure */

if (ASL_is_err(hDisplay = TMG di splay_create())
printf(“Failed to create display handle”);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is supported under all supported operating systems. Under DOS this function requires the Flash
Graphicslibrary and aVESA compatible graphics card.

There are no known bugs.

SEE ALSO

TMG _display _destroy, TMG_display init, TMG_display set ROI, TMG_display_set_parameter,
TMG _display set flags.

TMG Programmer’'s Manual v4.0.4 TMG_display_destroy 63

TMG_display_destroy

USAGE
Thandle TMG_display_destroy(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to adisplay structure or TMG_ALL_HANDLES.

DESCRIPTION

This function destroys a display structure, by freeing all the memory associated with that structure, and frees
the display handle.

If the parameter TMG_ALL_HANDLES s used, all previously created display structures are destroyed and
their associated handles freed.

TMG_image destroy(TMG_ALL_HANDLES) will destroy all TMG display structures by calling
TMG_display_destroy for al display handles. Thisisaconvenient way of destroying everything with just
one function call.

RETURNS
AS._OK.

EXAMPLES

The following code destroys a previously created display structure:
Thandl e hDi spl ay;

hDi splay = TMG create_di spl ay();

/* Destroy the display structure */
TMG_di spl ay_destroy(hDi spl ay) ;

In practiceit is generally easier and more convenient to use TMG_image _destroy(TMG_ALL_HANDLES) to
destroy all TMG structures on exit from the application.

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is supported under all supported operating systems. Under DOS this function requires the Flash
Graphicslibrary and aVESA compatible graphics card.

There are no known bugs.

SEE ALSO
TMG_display create, TMG_image _destroy.

TMG Programmer’'sManual v4.0.4 TMG_display_direct w31 [Windows 3.1] 64

TMG_display_direct_ w31 [windows 3.1]

USAGE

Terr TMG_display_direct w31(Thandle Hbase, Thandle Himage, ui32 phys addr, uil6 x_start, uil6
y_start, uil6 display_width, uil6 display depth, uil6 operation)

ARGUMENTS
Hbase Handle to a Bus Interface Board.
Thandle Handle to the image to be displayed.
phys_addr The physical address of the PCI display card’ s frame memory.
X_start The X coordinate of the top |eft of the image’ s target position.
y start TheY coordinate of the top left of the image’ starget position.

display width The width of the display in pixels.

display depth The depth of the display in bytes.

operation The pixel operation, one or more of TMG_COPY, TMG_LAT_INV, TMG_VERT_INV,
TMG_ROTATE180, TMG_CHECKERO, TMG_CHECKERL, TMG_MASKBL.

TMG_RESET isaspecial case described below.

DESCRIPTION

NOTE: Thisfunctioniscalled internally by TMG_display image when the flag TMG_DISPLAY DIRECT is
set and DCI is not present. It is documented here for the purposes of describing the raster operations defined
by operation. In general this function should not be called directly.

This function provides the facility to write directly from PC host memory to certain PCl VGA cards at very
high speed. It uses the same methodology as DCI (which if available should be used instead - as it supports
full window clipping etc). The command bypasses the usual Windows GDI (graphical device interface) and
the display card driver, so therefore it will always write the image on top (i.e. there can be no overlapping
windows). It isup to the application to determine whereabouts to write theimage. The following paragraphs
explain each of the parameters:

Hbase is the usual handle to a Snapper Bus Interface Board (see the Bus Interface Library Programmer’s
Manual).

phys_addressisthe physical address of start of frame memory for the display card. Typically, PClI VGA
cards are addressed near the top of the PC’s address space. For example at 0xfO000000. Many PCI display
cards use the first 16 Mbytes for register and control access and the next 16 Mbytes for frame memory.
Therefore atypical start address of frame memory would be OxfO800000. The example code fragment below
shows how to extract the base address using two Snapper driver functions (which internally make callsto the
PCI BIOS).

X_start andy_start are the coordinates of the top left of the target areafor theimage. Theoriginis at the top
left of the display.

screen_width isthe width of the display in pixels (e.g. 800, 1024 etc).

screen_depth isthe depth in bytes of the display. Valid depthsare 2 and 4 only. This represents 15 and 16
bit colour modes (2 bytes deep) and the 32 bit (24 bits per pixel, but 32 bit word aligned) colour mode
respectively.

operation specifies the pixel operation to do whilst displaying theimage. The options listed below can be
ORed together to provide multiple operations at the same time (without any loss of speed). TMG_RESET is
not a pixel operation like the other operations but a method of freeing the internal memory selectors used.
See the description below for more details.

TMG_COPY Simple copy operation.

TMG Programmer’'sManua v4.0.4 TMG_display_direct w31 [Windows 3.1] 65

TMG_LAT_INV
TMG_VERT_INV
TMG_ROTATE180

TMG_CHECKERO

TMG_CHECKER1
TMG_MASKBL

TMG_RESET

RETURNS

Theimageislateraly inverted.
Theimage is vertically inverted.

The image isrotated 180 degrees. Thisisactually equivalent to (TMG_LAT_INV |
TMG_VERT_INV).

A checkerboard mask is applied, the block size of which is defined by
TMG_CHECKERO | <size>, where <size> isa 16 hit unsigned integer.
TMG_CHECKERO will update the top left square.

Same as TMG_CHECKERO except it will now not update the top left square.

The same as TMG_COPY except the bottom left quadrant of the image will not get
updated. This option is not available with the checkerboarding modes, but works with
all other modes.

When the function TMG_display direct w31 [Windows 3.1] iscalled for the first
time, memory selectors are used internally to reference the display memory. These
selectors are freed and re-allocated whenever the size of the displayed image (or the
display mode) is changed. To free these selectors the function should be called with
operation set to TMG_RESET. Typically thiswould be done on program exit.

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code shows how to read the physical address of the PCI graphics card and use the write direct

function:

ui 8 bus_num dev_func_num

ui 32 phys_addr;

/* setup physical address */
PCl _DRV _find_class_code((ui32) 0x030000, 0, &bus_num &dev_func_num;

phys_addr =

PCl _DRV_read_cs_ui 32(bus_num dev_func_num (ui16) 0x10);

phys_addr += 0x800000; /* display hardware dependent, but typical */

/* optimsed capture and display |oop */
SNP24_capt ur e(Hsnp24, SNP24_START_AND RETURN) ;

while (live == TRUE)

{

while (SNP24_is_capture_fini shed(Hsnp24) == FALSE)

SNP24_read_vi deo_dat a(Hsnp24, Hi mage, TMG RUN);
SNP24_capt ure(Hsnp24, SNP24_START_AND RETURN); /* start next capture */
TMG di spl ay_di rect _w31(Hbase, Hi mage, phys_addr, 4, 50, 1024, 2,

TMG _LAT_INV);

BUGS/NOTES

Thisisalow level function only applicable under Windows 3.1. Itiscalled by TMG_display image and
writes directly to display hardware and therefore cannot be guaranteed to work on all PCI display cards.
However it is known to work on several popular PCI graphics cards. It is strongly recommended that DCI is
used in preference to this function under Windows 3.1. In fact an even better solution isto use Windows NT

and DirectDraw.

TMG Programmer’'sManual v4.0.4 TMG_display_direct w31 [Windows 3.1] 66

SEE ALSO

PCI_DRV_DMA to_display win31 (described in the Snapper Bus Interface Board Library Programmer’s
Manual)

TMG Programmer’s Manual v4.0.4 TMG _display_draw_text [DOS] 67

TMG_display_draw_text [DOS]

USAGE
Terr TMG_display_draw_text(Thandle Hdisplay, char *text, uil6x, uil6y)

ARGUMENTS
Hdisplay Handle to adisplay.
text Text string to write to the display.
X X position of the text (origin = bottom | eft).
y Y position of the text (origin = bottom | eft).
DESCRIPTION

This function writes text in the previoudly initialised font size (using TMG_display_set font [DOS)) to the
display at screen coordinates x, y (the origin is at the bottom left). The text iswritten as light white
(TMG_LIGHT_WHITE).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code sets afont type and draws the text in the top left of the screen, over a green box:

ui 16 ScreenHei ght;
i16 Roi [ASL_SIZE 2D RO J;

TMG_di spl ay_cl ear (hDi spl ay) ;
ScreenHei ght = (ui 16) TMG di spl ay_get _paranet er (hDi spl ay, TMG HEl GHT) ;

Roi [ASL_RA _X_START] = 0;

Roi [ASL_RO _Y_START] = ScreenHei ght - 110;
Roi [ASL_RO _X_LENGTH = 274;

Roi [ASL_RO _Y_LENGTH = 100;

TMG di spl ay_box_fill (hDi splay, FG GREEN, Roi);
TMG di spl ay_set _font (hDi spl ay, TMG FG 15X19);
TMG_di spl ay_draw_text (hDi splay, “TM5 - FG Denp”, 10, ScreenHei ght - 40);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples’ at the start of this manual.

If this function is used in paletted display modes, the first 16 colours need to be reserved for the standard set
of VGA colours (see TMG_cmap_set_type), otherwise the colour of the drawn boxesis unlikely to be as
expected!

Greater control of over the text (such as alternative colours) is provided by the Flash Graphics library and
direct calls can be made from applications using the TMG library. For further details see the Flash Graphics
manual.

SEE ALSO
TMG_display_set font [DOS.

TMG Programmer’s Manual v4.0.4 TMG_display get flags

68

TMG_display_get flags

USAGE
Tboolean TMG_display_get_flags(Thandle Hdisplay, uil6 type)

ARGUMENTS
Hdisplay Handle to a display structure.
type Flag type.

DESCRIPTION

This function returns the boolean state of the flag, selected by type, in Hdisplay.
The flag types are described in TMG_display_set flags.

RETURNS
Returns TRUE or FALSE.

EXAMPLES

The following code determines if the display is colour:

if (TMG display_get_flags(hDisplay, TM5 DI SPLAY_ IS COLOUR) == TRUE)
printf(“We have a col our display”);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_set flags, TMG_display_get parameter, TMG_display init.

TMG Programmer’s Manual v4.0.4 TMG _display_get hwnd [Windows] 69

TMG_display_get hWnd [wWindows]

USAGE
HWND TMG_display_get hWhd(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to adisplay.

DESCRIPTION
This function returns Hdisplay' sinternal window handle. If Hdisplay is not valid, O is returned.

RETURNS

The handle to the window that Hdisplay references on success, otherwise 0.

EXAMPLES

The following code fragment shows a sub-routine used to repaint a window:

/* Repaint image */
voi d S24Repai nt ()

{
RECT rc;

;1 CGetCientRect (TMG di spl ay_get _hwWid(S24. m hDi spl ay), &rc);
::lnvalidat eRect (TMG di spl ay_get _hWid(S24. m hDi spl ay), &c, TRUE);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display _init, TMG_display_set hWwhd [Windows].

TMG Programmer’'sManual v4.0.4 TMG _display_get paint_ hDC [Windows] 70

TMG_display_get _paint_hDC [windows]

USAGE
HDC TMG_display_get paint_hDC(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to adisplay.

DESCRIPTION

This function returns Hdisplay' sinternal handle to adevice context. If Hdisplay isnot valid, O is returned.
Generally the device context will be O (i.e. no device context) because it is released on exit from
TMG_display image. Theonly timeitisn't O iswhen the application has set it (before TMG_display_image
or TMG_display print DIB [Windows] iscalled). Thisfunction israrely needed and only documented for
completeness.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
HDC hDC,

hDC = TMG di spl ay_get _pai nt _hDC(hDi spl ay) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG _display print DIB [Windows], TMG_display set paint hDC [Windows].

TMG Programmer’s Manual v4.0.4 TMG_display get parameter

71

TMG_display_get_parameter

USAGE
ui32 TMG_display get parameter(Thandle Hdisplay, uil6 parameter)

ARGUMENTS
Hdisplay Handle to a display structure.
parameter Parameter type.
DESCRIPTION

This function returns the value of an internal parameter from Hdisplay selected by parameter. The parameter

isaways returned as a 32 unsigned integer although some of the parameters are stored as 16 unsigned

integers internally in the display structure.
The parameter types are described in TMG_image_set_parameter.

RETURNS
The parameter selected by parameter as an unsigned 32 bit integer (ui32).

EXAMPLES

The following code fragment reads back the screen resol ution:

ui 32 width;
ui 32 hei ght;

wi dth = TMG di spl ay_get _par anet er (hDi spl ay, TMG W DTH);
hei ght = TMG di spl ay_get _paraneter (hDi spl ay, TMS HEl GHT) ;
printf(“Display size = %d x %d”, (long) width, (long) height);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_set_parameter, TMG_display set flags.

TMG Programmer’s Manual v4.0.4 TMG_display_get ROI

72

TMG_display_get ROI

USAGE
Terr TMG_display_get ROI(Thandle Hdisplay, 116 *roi)

ARGUMENTS
Hdisplay Handle to a display structure.
roi ROI array with four elements, with #defined element names:
ASL_ROI_X START Horizontal start position of ROl (0 = left of region).
ASL_ROI_Y _START Vertical start position of ROI (0 = top of region).

ASL_ROI_X LENGTH Horizontal width of ROI.
ASL_ROI_Y_LENGTH Vertica height of ROI.
DESCRIPTION
This function copies the current ROI (Region of Interest) into the array roi.

Thetop left corner of the region is defined with the ASL._ROI_X_START and ASL_ROI_Y _START
coordinates and the region size defined with the ASL_ROI_X LENGTH and ASL_ROI_Y LENGTH values.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code reads back the display ROI:

i16 Roi [ASL_SIZE 2D RO]; /* a 4 element array */
i 16 RO W dt h;
i 16 RO Hei ght;

TMG_di spl ay_get _RO (hDi spl ay, Roi);

ROWdth = Roi [ASL_RO X LENGTH] ;
RO Hei ght = Roi [ASL_RO _Y LENGTH|;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_get ROI, TMG_display_image.

TMG Programmer’s Manual v4.0.4 TMG_display_image 73

TMG_display_image

USAGE
Terr TMG_display_image(Thandle Hdisplay, Thandle Himage, ui16 TMG_action)

ARGUMENTS
Hdisplay Handle to adisplay.
Himage Handle to an image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function displays the image Himage, to the display (or window) referenced by Hdisplay.

DOS

Under DOS, strip processing is fully supported and the function can be used in a strip processing loop in the
same way as other TMG functions, although with modern PCs there is almost always enough memory not to
worry about strip processing.

The image pixel format must always be the same as that of the display. For exampleif the display is
initialised as TMG_800x600x16 (i.e. 16 bit colour), then the image to be displayed must be type
TMG_RGB16.

WINDOWS

Under Windows NT, 95 and 3.1 the TMG display API is the same, but with Windows 3.1 having an extra
specialist function (TMG_display _direct w31 [Windows 3.1]). For all these operating systems, the image
must be displayed in one strip - i.e. the whole image at atime.

There are three methods by which images can be displayed under Windows - these are DIB, DDB and
DirectDraw (or DCI asit’s called on Windows 3.1). The algorithm to decide which method to useis as
follows: If the TMG_IS DIB flag is set, then the image will be displayed asaDIB. If it isnot set and the
TMG_DISPLAY _DIRECT flag is set then DirectDraw will be used (if available, or else a proprietary direct
display method), otherwise DDB will be used. Each method is described in detail below:

Firstly the image can be displayed as a (24 hit) DIB. A DIB is adevice independent bitmap which will get
displayed under any graphics mode by the graphics driver (to the best of its ability). To generate aDIB
image, TMG_image_convert is be used with the output format set to TMG_BGR24 and the TMG_IS DIB flag
set. This method is usually not the fastest, but is generally very reliable - i.e. it should alwayswork. The
quality of the rendered image will vary according to the screen mode and graphics card driver. It is strongly
recommended to use 32k colours or more. To achieve full 8 bit dynamic range on each primary colour
(and/or gray levels), a 32 hit display mode will need to be used (i.e. 16.7 million colours).

The second method is to convert the image into the required pixel format prior to display, so that the graphics
card driver does not need to convert the pixel format itself. This method is referred to asthe DDB method
(Device Dependent Bitmap). Thistime, TMG_image _convert is used to convert the pixel format of the image
to that of the display (or it may be acquired from video acquisition hardware already in that pixel format).
Thedisplay’'s pixel format can be determined using the function TMG_display_get parameter. This method
is generally faster than the DIB method but has been known to fail on some graphics cards - usually because
graphics card driver does not support “BitBIt of greater than 64k bytes’ at atime. (This DDB method only
really appliesto Windows 3.1 — for Windows NT and 95, DirectDraw, as described below, is the preferred
method.)

The third method, and certainly for Windows NT and 95 is using a direct access (and hence fast) method —
DirectDraw for Windows NT/95, or DCI (Display Control Interface). To use the direct method, the flag

TMG Programmer’s Manual v4.0.4 TMG_display_image 74

TMG_DISPLAY DIRECT isset (see TMG_display set flags). DirectDraw (or DCI) requires adriver from
the graphics card vendor that supports this direct API (and for Windows 3.1, the Video for Windows runtime
libraries). (Video for Windows runtime should be available from your graphics card vendor and is often
provided with the vendor’s Windows 3.1 drivers.)

Display under DirectDraw/DCI can also make use of the TMG_HALF_ASPECT flag and TMG_FIELD ID
parameter to re-interlace fields whilst displaying to re-construct full size correct aspect ratio images at high
speed.

X WINDOWS

Under X Windows the image must always be displayed in one strip - i.e. the whole image at atime.

The image pixel format must always be the same as that of the display - that is either paletted or 32 bit (i.e.
TMG_PALETTED or TMG_XBGR32). For detailed examples, see the application examples supplied with the
Solaris or LynxOS SDKs.

MacOS

Under MacOS the image must always be displayed in one strip - i.e. the whole image at atime. The action
parameter is ignored.

The image must be supplied in one of the following formats: TMG_Y8, TMG_Y16, TMG_RGB15 or
TMG_XBGR32.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the examples in the “Image Display Functions and Examples’ section at the start of this manual.

BUGS/NOTES

Under DOS this function requires the Flash Graphics library. See the section on “Image Display Functions
and Examples’ at the start of this manual.

Under all operating systems, apart from DOS, the image must be displayed in one strip - i.e. the whole image
a atime.

There are no known bugs.

SEE ALSO
TMG_display _init, TMG_display direct w31 [Windows3.1].

TMG Programmer’s Manual v4.0.4 TMG_display_init

75

TMG_display_init

USAGE
Terr TMG_display_init(Thandle Hdisplay, HWND hwhd) [Windows]
Terr TMG_display _init(Thandle Hdisplay, uil6 mode) [DOS, X Windows]
Terr TMG_display_init(Thandle Hdisplay, PixMapHandle hPmap) [MAC]

ARGUMENTS
Hdisplay Handle to adisplay.
hwnd Handle to a window [For Windows, MAC].
mode For DOS this is set to the graphics mode - see below.
For X Windows this parameter must be set to TMG_X_WINDOWS.
DESCRIPTION
WINDOWS

This function initialises the internal structure referenced by Hdisplay using the handle to a valid window,
hwnd. The display organisation (i.e. depth, colour format etc) is derived and stored within the structure.
TMG_display get parameter can be used to examine these fields. If DirectDraw (or DCI - Display Control
Interface for Windows 3.1) is present, it will be initialised and its presence can be tested using
TMG_display_get_parameter with the parameter TMG_DISPLAY_DIRECT _CAPS. If the return valueis
non-zero, DirectDraw (or DCI) is present.

The following display types are supported at all resolutions:

e 32K colourswith colour organisation RRRRRGGGGGBBBBB (TMG_RGB15).

« 65K colourswith colour organisation RRRRRGGGGGGBBBBB (TMG_RGB16) (Preferred mode).

» 16.7 million colours with colour organisation BGR24 (TMG_BGR24).

e 16.7 million colours with colour organisation BGRX32 (TMG_BGRX32) (Preferred mode).

The 16.7 million colours mode using colour organisation BGR24 (sometimes known as “packed pixel”) has

limited support for fast display update. Thisis because each pixel isnot aligned to 32 hits, thus certain raster
operations are not so efficient. It is strongly recommended that the alternative modes are used.

The 32K and 64K colour modes give good performance and good colour quality, although some degradation
will be noticed on gradually changing tones. BGRX32 provides the ultimate quality and is only dlightly
slower than the 16 bit modes.

When displaying to multiple windows, a display handle should be created and initialised for each window.

DOS

This function initialises the graphics card to one of the following screen modes:

TMG_DOS PROMPT This puts the display into the usual DOS text mode. It isused to
switch the display back to text mode from one of the graphics modes
described below.

TMG_640x480x8_GRAYSCALE Thisisan 8 it grayscale pal etted mode, with a screen resolution of
640 x 480, where the palette is written with grayscales from 0 to 255.
For example, writing a pixel value of 255 resultsin white.

TMG_640x480x8 RGB Thisisan 8 it colour paletted mode, with a screen resolution of 640
X 480, where the palette is written to contain a RGB 3:3:2 direct
colourmap. For example, writing a pixel value of OXFF resultsin

TMG Programmer’s Manual v4.0.4 TMG_display_init 76

white; OXEO resultsin afully saturated red; 0x03 in blue etc.

TMG_640x480x16 Thisisa 16 bit colour mode, with a screen resolution of 640 x 480,
where the colours are represented by RGB 5:6:5. For example a
pixel value of 0xF800 resultsin a saturated red; and Ox001F in a
saturated blue etc.

TMG_640x480x24 Thisisa 24 bit colour mode, with a screen resolution of 640 x 480,
where the colours are represented by RGB 8:8:8.

TMG_800x600x8 GRAYSCALE Thisisan 8 it grayscale pal etted mode, with a screen resolution of
800 x 600. The palette isthe same as
TMG_640x480x8_GRAYSCALE.

TMG_800x600x8 RGB Thisisan 8 hit colour paletted mode, with a screen resolution of 800
x 480. The paletteisthe same as TMG_640x480x8 RGB.

TMG_800x600x15 Thisisa 15 bit colour mode, with a screen resolution of 800 x 600,
where the colours are represented by RGB 5:5:5.

TMG_800x600x16 Thisisa 16 bit colour mode, with a screen resolution of 800 x 600.

Pixel values are mapped into colours in the same way as
TMG_640x480x16.

TMG_800x600x24 Thisisa 24 bit colour mode, with a screen resolution of 800 x 600,
where the colours are represented by RGB 8:8:8.

TMG_1024x768x8 RGB Thisisan 8 hit colour paletted mode, with a screen resol ution of
1024 x 768. The palette isthe same as TMG_640x480x8 RGB.

TMG_1280x1024x8 RGB Thisisan 8 hit colour paletted mode, with a screen resol ution of

1280 x 1024. The palette isthe same as TMG_640x480x8 RGB.

X WINDOWS

Thisfunction initialises the internal structure referenced by Hdisplay. The parameter mode, must be set to
TMG_X WINDOWS. The X display is opened using the DISPLAY environment variable

(i.e. XOpenDisplay(NULL) is called). Various parameters are set internally in the display structure including

the width, height, depth and if applicable, number of free colours, of the display. These may be examined
using the function TMG_display_get_parameter.

Only paletted and 24 bit displays are supported. However this covers the mgjority of SPARCstation based
Solaris 2 environments. The pixel formatsin detail are:

« Paletted: 8 bit writeable palette (or colourmap) (TMG_PALETTED).

e 16.7 million colours with colour organisation XBGR32 (TMG_XBGR32). This mode is basically 24 bits

per pixel, but with each pixel aigned to a 32 bit word boundary. The display depth and pixel format

returned by TMG_display_get parameter are 24 and TMG_RGB24 respectively, rather than the expected
32 and TMG_XBGR32. Thisisbecauseinternal X functions, such as XCreatel mage expect a depth of 24

even though the display isreally 32 bits deep.
The 24 bit display mode is much better quality and is often faster in terms of overall performance (as no
colourmapping operations are needed).

When displaying to multiple windows, a display handle should be created and initialised for each window.

MacOS

Thisfunction initialises the internal structure referenced by Hdisplay using the handle to a valid window
pixmap, hPmap, attached to the window area you want to display in. The display organisation (i.e. depth,
colour format etc) is derived and stored within the structure. TMG_display _get parameter can be used to
examine these fields.

TMG Programmer’s Manual v4.0.4 TMG_display_init 77

The default settings are for image stretching to fit the window size. This can be over-ridden by a subsequent
call to TMG_display_set_parameter with the argument of TMG_STRETCH set to zero.

The MAC display modes supported are 256-level greyscale, 64K greyscale, “thousands of colours’ and
“millions of colours’:

e 256 greyscale (TMG_Y8).

e 64K greyscade (TMG_Y16).

« 32K colourswith colour organisation RRRRRGGGGGBBBBB (TMG_RGB15).

e 16.7 million colours with colour organisation BGRX32 (TMG_BGR24) (Preferred mode).

The 32K colour mode gives good performance and good colour quality, although some degradation will be
noticed on gradually changing tones. BGRX32 provides the ultimate quality.

When displaying to multiple windows, a display handle should be created and initialized for each window.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

WINDOWS

The following initialises the TMG display structure in the view class the first time that OnDraw is called:
voi d CS24Vi ew. : OnDr awm(CDC* pDC)

{
static BOOL bFirstTine = TRUE;
if (bFirstTime == TRUE)
{
TMG di splay_init(S24. m hDi spl ay, GCet Saf eHwnd());
TRACE(“Direct Draw Caps = %098l x\ n”,
TMG_di spl ay_get _par anmet er (S24. m_hDi spl ay, TMG DI SPLAY_DI RECT_CAPS));
bFirstTi me = FALSE;
}
}

See al so the extended examples in the “ Sample Applications’ section.

DOS
The following initialises the display to aresolution of 800 by 600 in 65K colours:
Thandl e hDi spl ay;

hDi splay = TMG di spl ay_create();

TMG _di splay_init (hDi splay, TMG 800x600x16) ;
getch(); /* Press any key to exit */
TMG_di splay_ini t (hDi splay, TMG DOS_PROWPT) ;
exit(0);

See also the extended examples in the “ Sample Applications” section.

X WINDOWS
See the section “Image Display Functions and Examples’.

TMG Programmer’s Manual v4.0.4 TMG_display_init 78

MacOS

The following code fragment obtains a PixMap handle from avalid grafport window and initialises the
display with it as the destination:

Pi xMapW ndow hpnPl ayThr u;
hDi spl ay = TMG di spl ay_create();

/* Cbtain a valid PixMapWndow to display with */
hprPl ayThru = Get W ndowPor t (pwMW ndow) - >por t Pi xMVap;

/* Initialise display with PixMapW ndow */
TMG di splay_init (hDi splay, hpnPl ayThru);

See also the section “Image Display Functions and Examples’.

BUGS/NOTES

Under Windows, display modes of 256 colours or less are not supported by the TMG library. However the
Windows APl may be programmed directly if 256 colours or less have to be used.

Under DOS this function requires the Flash Graphics library and a graphics card capable of VESA display
modes. See the section on “Image Display Functions and Examples’ at the start of this manual.

In the Flash Graphics library there are more supported graphics mode which are readily programmed. Direct
calls can be made from applications using the TMG library direct to the Flash Graphics library. For further
details see the Flash Graphics manual.

There are no known bugs.

SEE ALSO
TMG _display_create.

TMG Programmer’'sManual v4.0.4 TMG _display_print_ DIB [Windows] 79

TMG_display_print_DIB [windows]

USAGE

Terr TMG_display_print_DIB(Thandle Hprinter, Thandle Himage, i16 percentage, uil6 TMG_action)

ARGUMENTS
Hprinter
Himage
percentage
TMG_action

DESCRIPTION

Handle to a printer (thisisidentical to a display handle).
Handle to an image.
Percentage scaling factor (100% = full print area).

Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

Thisfunction is a convenient way of printing DIB images under Windows. Hprinter is created in the same
way as adisplay handle, but the device context and internal device dimensions are modified (see example

below).

percentage is used to control the size of the printed image. It represents the percentage of the maximum print
areawhilst still preserving the image’s aspect ratio.

The image must always be displayed in one strip - i.e. the whole image at atime.

The function name includes“_display” in it because it is a sub-set of the display function group.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following exampl e shows how the device context istested upon and then the image is either printed or
displayed as appropriate:
voi d CS24Vi ew. : OnDr awm(CDC* pDC)

{

if (TMG.i nage_get _ptr(S24. m hDI Bl mage, TMG | MAGE_DATA) != NULL)
if (pDC->IsPrinting()) {

}

/1 Set up the printer dinmensions, then print
TMG _di spl ay_set _paraneter (S24. m hPrinter, TMS W DTH,

(ui 16) pDC- >Cet Devi ceCaps(HORZRES)) ;
TMG di spl ay_set _paraneter (S24. m hPrinter, TMG HEl GHT,

(ui 16) pDC- >Cet Devi ceCaps(VERTRES)) ;
TMG_di spl ay_set _pai nt _hDC(S24. m hPrinter, pDC- >Get Saf eHdc());
TMG di spl ay_print_DI B(S24. m hPrinter, S24.m hDl Bl mage, 85, TMG RUN);
TMG di spl ay_set _pai nt _hDC(S24. m hPrinter, 0);

el se
{ /I* display */

TMG_di spl ay_set _pai nt _hDC(S24. m _hDi spl ay, pDC- >Get Saf eHdc());
TMG di spl ay_i mage(S24. m hDi spl ay, S24. m hDI Bl mrage, TMG _RUN) ;
TMG_di spl ay_set _pai nt _hDC(S24. m hDi splay, 0); /* Set back */

TMG Programmer’'sManual v4.0.4 TMG _display_print_ DIB [Windows]

80

4.m _hPrinter is created as a display device in the usual way (a printer is aform of display):
S24. m hPrinter = TMG di spl ay_create();

See also the examples in the “Image Display Functions and Examples’ section at the start of this manual.

BUGS/NOTES
The image must always be printed in one strip - i.e. the whole image at atime.

There are no known bugs.

SEE ALSO
TMG_display_image, TMG_display_set_paint hDC [Windows].

TMG Programmer’s Manual v4.0.4 TMG _display_set flags 81

TMG_display_set_flags

USAGE
Terr TMG_display_set flags(Thandle Hdisplay, uil6 type, Tboolean state)

ARGUMENTS
Hdisplay Handle to adisplay structure or TMG_ALL_HANDLES.
type Flag type.
state Either TRUE or FALSE.

DESCRIPTION

This function sets flagsin Hdisplay which are then subsequently tested on by various TMG display functions
(in particular TMG_display_image).

Theflags are asfollows:

TMG_DISPLAY IS COLOUR Thisflagis set automatically as appropriate by TMG_display _init and
should only be read by a user application. It indicates whether the display
is colour or not.

TMG_DISPLAY _DIRECT Thisflag, set by auser application, indicates that TMG_display_image
should use the best method available to it that displays directly to the
display surface (i.e. directly to screen memory). For example, under
Windows, DirectDraw will be used (DCI for Windows 3.1).

TMG_STRETCH Thisflag, set by auser application, indicates that the image should be
stretched (or scaled) to fit the display window. Thisis not supported
under al display environments.

TMG_KEEP_ASPECT Thisflag, when used in conjunction with TMG_STRETCH, indicates that
the image should be stretched (or scaled) to fit the display window, but
that the original aspect ratio should be preserved. Thisis not supported
under al display environments.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets the display window referenced by hDisplay to display images as large as possible
within the window, but till preserving the aspect ratio.

TMG di spl ay_set _fl ags(hDi spl ay, TMG STRETCH | TMG _KEEP_ASPECT) ;

BUGS/NOTES
The TMG_STRETCH and TMG_KEEP_ASPECT flags are only supported under Windows.

The TMG_STRETCH flag is the default setting under MacOS. Turn it off to improve the image display rate
for images where image size and display area size are not equal.

SEE ALSO
TMG _display get flags, TMG_display set parameter, TMG_display image.

TMG Programmer’s Manual v4.0.4 TMG _display_set_font [DOS] 82

TMG_display_set _font [DOS]

USAGE
Terr TMG_display_set_font(Thandle Hdisplay, uil6 font)

ARGUMENTS
Hdisplay Handle to adisplay.
font Font type - one of the following:
TMG_FG_6X7
TMG_FG_8X8
TMG_FG_8X14
TMG_FG_8X16
TMG_FG_15X19
DESCRIPTION

This function sets the size of the font in preparation for using TMG_display draw_text [DOS]. For any
complex font display application, isit recommended that the Flash Graphics library is called directly.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example for TMG_display_draw_text [DOSY].

BUGS/NOTES

This function requires the Flash Graphics library and is only supported under DOS with a VESA compatible
graphicsdriver. Please refer to the Flash Graphics manual for more information.

Greater control of over the fonts (such as custom fonts) is provided by the Flash Graphics library and direct
calls can be made from applications using the TMG library. For further details see the Flash Graphics
manual.

There are no known bugs.

SEE ALSO
TMG _display draw_text [DOS).

TMG Programmer’'sManual v4.0.4 TMG_display_set hwnd [Windows] 83

TMG_display_set_ hWnd [windows]

USAGE
Terr TMG_display_set hWhd(Thandle Hdisplay, HWND hwhd)

ARGUMENTS
Hdisplay Handle to adisplay.
hwhd Handle to awindow.
DESCRIPTION

This function sets Hdisplay’ s internal window handle, that is subsequently used by TMG_display_image to
know into which window to display images.

Thisfunction israrely needed, because TMG_display_init takes the appropriate window handle as parameter.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
HAWND hwhd1;

TMG_di spl ay_set _hwWwhd(hDi spl ay, hwidl);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_init, TMG_display_get hwnd [Windows].

TMG Programmer’s Manual v4.0.4 TMG _display_set mask [MAC] 84

TMG_display_set_mask [MAC]

USAGE
Terr TMG_display_set_ mask(Thandle Hdisplay, RgnHandle hRegion)

ARGUMENTS

Hdisplay Handle to adisplay.

hRegion Region Handle containing a single bit mask.
DESCRIPTION

This function allows a pass-through mask to be set for the display. Only at the pixels where the mask is set to
1 will the video be displayed to the Mac Display. This offers users the ability to set overlays or non-
rectangular windows through which the video can be displayed.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

SEE ALSO
TMG_display_create.

TMG Programmer’'sManual v4.0.4 TMG _display_set paint_hDC [Windows] 85

TMG_display_set _paint_hDC [windows]

USAGE
Terr TMG_display_set paint_ hDC(Thandle Hdisplay, HDC hDC)

ARGUMENTS

Hdisplay Handle to adisplay.

hDC Handle to a device context.
DESCRIPTION

This function sets the device context in preparation for using TMG_display_image or
TMG_display print_ DIB [Windows] .

The device context is normally derived internally to TMG_display_image (and released on exit), but
occasionaly it is necessary to set a specific device context - for example, when a pointer to a specific device
context is passed into the OnDraw function in the view class (using Microsoft Visual C++). When setting the
device context, it isimportant to “release it” from the TMG library when finished displaying (or printing) by
calling TMG_display_set paint_hDC with an hDC of 0.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
See the example for TMG_display_print_ DIB [Windows] .

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display print DIB [Windows], TMG_display get paint hDC [Windows].

TMG Programmer’s Manual v4.0.4

TMG_display_set_parameter 86

TMG_display_set_parameter

USAGE

Terr TMG_display_set parameter(Thandle Hdisplay, uil6 parameter, ui32 value)

ARGUMENTS
Hdisplay Handle to a display structure.
parameter Parameter type.
value The actual value passed in as a 32 bit unsigned integer (although some parameters will only
be 16 bit unsigned integers).
DESCRIPTION

Thisfunction setsinternal parametersin the display structure referenced by Hdisplay.

The parameters are as follows:
TMG_PIXEL_FORMAT

TMG_WIDTH

TMG_HEIGHT

TMG_DEPTH

TMG_FRAME_MEMORY_OFFSET

TMG_RASTER OP

This parameter is set automatically by TMG_display_init and should
only be read by a user application. It represents the pixel format of
the display and has the same values as the image pixel formats, for
example TMG_RGB16. Pixel formats are type uil6. For acomplete
list of pixel formats see the section “Pixel Formats and Return
Types' at the start of this manual.

This parameter is set automatically by TMG_display_init and should
only be read by a user application. It represents the width in pixels
of the display. Also known as horizontal resolution. This parameter
istype uil6.

This parameter is set automatically by TMG_display_init and should
only be read by a user application. It representsthe height in pixels
of the display. Also known as vertical resolution. This parameter is
type ui16.

This parameter is set automatically by TMG_display_init and should
only be read by a user application. It represents the depth in bits of
the display - in other words the number of bits per pixel. For
example the pixel format TMG_RGB15 has depth 15. This
parameter is type uil6.

This parameter is set from a user application and represents the
memory offset from a graphics card’ s base address to the actual start
of image memory. Thisisonly supported under Windows 3.1 with
the TMG_DISPLAY_DIRECT flag and with no DCI present. Often
the memory offset is 16Mbytes (0x800000L). This parameter istype
ui32.

This parameter is set from a user application and represents the
raster operation that may be performed at the same time as
displaying the image. Thisis only supported under Windows 3.1
with a suitable PCI graphics card, the TMG_DISPLAY DIRECT flag
set and with no DCI present. Raster operations include
lateral/vertical inversions etc - see TMG_display_direct w31
[Windows 3.1]. This parameter istype ui32.

TMG Programmer’s Manual v4.0.4 TMG_display_set_parameter 87

TMG_DISPLAY_MANAGED_BY GR This parameter allows the user to override the default Win32

APHICS CARD DirectDraw behaviour of the graphics card. When set to TRUE (the
default), the graphics card handles the display of image data itself
from system memory to display. However some graphics cards lie
about their ability to scale in hardware and therefore may fail to
display animage. Setting this parameter to FALSE allows
DirectDraw to handle the image display itself rather than the
graphics card, which generally fixes the problem, but sometimes
with a dlight performance degradation. This parameter istype ui32.

TMG_DISPLAY _DIRECT_CAPS This parameter is set automatically by TMG_display_init and should
only be read by a user application. It represents the DirectDraw
capability flags as defined in the DirectDraw specification (DCI for
Windows 3.1). Thisisonly supported under Windows. This
parameter is type ui32.

Note that the width, height and depth represent the dimensions of the overall display size and not of any
particular (child) window. Under X Windows, the dimensions represent the root window.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to determine the current graphics display depth:

TMG di splay_init(hbDi splay, GetSafeHwnd());
TRACE(“ Screen Depth = %98l x\ n”, TMG di spl ay_get _par anet er (hDi spl ay
TMG_DEPTH)) ;

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_get_parameter, TMG_display_set_flags.

TMG Programmer’s Manual v4.0.4 TMG_display_set ROI 88

TMG_display_set ROI

USAGE
Terr TMG_display_set ROI(Thandle Hdisplay, Tparam mode, i16 *roi)

ARGUMENTS
Hdisplay Handle to a display structure.
mode Required mode - TMG_ROI_INIT or TMG_ROI_SET.
roi ROI array with four elements, with #defined element names:
ASL ROI_X START Horizontal start position of ROl (0 = left of region).
ASL_ROI_Y_START Vertical start position of ROl (0 = top of region).

ASL ROI_X LENGTH Horizontal width of ROI.
ASL_ROIl_Y _LENGTH Vertical height of ROI.

DESCRIPTION

Thisfunction defines a ROI (Region of Interest) for the display referenced by Hdisplay. A region of interest
represents an area within the total display surface or window referenced by Hdisplay. Note that there can be
multiple display handles referencing the same display, thus making it easy to have multiple ROIs without
having to re-call the function TMG_display_set ROI.

Thetop left corner of the region is defined with the ASL_ROI_X_START and ASL_ROI_Y START
coordinates and the region size defined with the ASL_ROI_X LENGTH and ASL_ROI_Y LENGTH values.

MODE PARAMETER LIST

TMG_ROI_INIT Thisisthe default option set by TMG_display _init. In this mode the ROI is set to the
whole window or display area. ThusASL_ROI_X START and ASL_ROI_Y_START
are set to zero, and ASL_ROI_X LENGTH and ASL_ROI_Y LENGTH are set to
TMG_AUTO_WIDTH and TMG_AUTO_HEIGHT respectively. The “AUTO” means
that the full width and height of the image will be displayed subject to the clipping
restraints of the window.

TMG_ROI_SET Theroi passed in is set.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .
EXAMPLES
A typical application isto display a sub-sampled image in the foreground - say in the bottom left of the
display:
i16 Roi [ASL_SIZE 2D RO]; /* a 4 element array */

/* The display size is 800 x 600 - we will set a RO of 128 x 128 */
Roi [ASL_RO _X_START] = 462;

Roi [ASL_RO _Y_START] = 10;

Roi [ASL_RO _X_LENGTH] 128;

Roi [ASL_RO _Y_LENGTH] 128;

TMG di spl ay_set _RO (hDi spl ay, TM5 RO _SET, Roi);

This next example shows how the whole image can be displayed, but starting at a different origin:
i16 Roi [ASL_SIZE 2D RO]; /* a 4 element array */

TMG Programmer’s Manual v4.0.4 TMG_display_set ROI

89

Roi [ASL_RO X START] = 462;
Roi [ASL_RO _Y_START] = 10;
Roi [ASL_ROl X LENGTH] = TMG AUTO W DTH;

Roi [ASL_RO _Y_LENGTH = TMG_AUTO HEI GHT;
TMG di spl ay_set _RO (hDi spl ay, TM5 RO _SET, Roi);

BUGS/NOTES

Under DOS, initialisation using TMG_ROI_INIT actually setsthe ASL_ROI_X_START and
ASL_ROI_Y_START parametersto TMG_AUTO_CENTRE, which automatically centres the image on the
display. Thisisonly supported under DOS.

Also the origin is the bottom left under DOS and not the top left asit isin other operating environments.

SEE ALSO
TMG_display_get ROI, TMG_display_image.

TMG Programmer’'sManual v4.0.4 TMG _display_set Xid [X Windows]

90

TMG_display_set_Xid [X Windows]

USAGE
Terr TMG_display_set Xid(Thandle Hdisplay, ui32 type, Window xid)

ARGUMENTS

Hdisplay Handle to adisplay.
type X Window type.
xid The X Window ID.

DESCRIPTION

This function sets various X Window IDs in the structure referenced by Hdisplay.

The X Window types are as follows:

TMG_XID_FRAME Thisisthe X Window ID of the applications root frame.
TMG_XID_CANVAS Thisisthe X Window ID of the drawable canvas associated with the frame.
TMG_XID_WINDOW Thisisthe X Window ID of the display window.

The X Window IDsfor the frame and canvas need to be set before TMG_display_init is called, so that the

correct colourmap association can be set up.

ThelDs TMG_XID_CANVASand TMG_XID_FRAME are only needed when using Solaris 2 and Sun’s
OpenWindows and “Devguide” toolkit (no longer actively supported by Sun).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES
See the section “Image Display Functions and Examples’.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_display_init.

TMG Programmer’s Manual v4.0.4 TMG_draw_get_ptr 91

TMG_draw_get_ptr

USAGE
Terr TMG_draw_get_ptr(ui32 dwType, void **ppData)

ARGUMENTS
dwType The type of datarequired.
*ppData Pointer to data.
DESCRIPTION

This function assigns the address of a required type of data to the supplied pointer.

Thetypes of data are as follows:

TMG_FONT_STRUCT_6x7 Gets the address of the sSTMG_Font structure containing a6 x 7 font.
TMG_FONT_STRUCT 9x14 Getsthe address of the sTMG_Font structure containing a9 x 14 font.
TMG_FONT_STRUCT _15x19 Getsthe address of the sSTMG_Font structure containing a 15 x 19 font.

The data structures exist within the TMG library, hence the pointer to the required data only needs to be
declared before TMG_draw_get_ptr iscalled.

RETURNS
TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code gets a pointer to the internal TMG 9x14 font structure;
struct sTMs Font *psTrmgFont = NULL;/* Pointer to TMG font structure */

TMG draw _get _ptr(TMG_FONT_STRUCT_9x14, (void **)&psTngFont);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_draw_text, TMG_draw_timestamp.

TMG Programmer’s Manual v4.0.4 TMG_draw_text 92

TMG_draw_text

USAGE

Terr TMG_draw_text(Thandle himage, char *pszString, struct STMG_Font *psTmgFont, ui32 dwX, ui32
dwy, ui32 dwMode, ui32 dwColour)

ARGUMENTS
hlmage Handle to the image.
pszstring Pointer to text string.
psTmgFont Pointer to TMG font structure.
dwxX Pixel number (1..N) in image of top left point of text.
dwy Line number (1..N) in image of top left point of text.
dwMode Background mode.
dwColour Text colour.
DESCRIPTION

This function draws atext string pszString in TMG font psTmgFont into the image himage starting at the
point (dwX, dwy).

The Background mode dwMode can be one of the following:

TMG_DRAW BG_TRANSPARENT Text isdrawn on abackground level which ranges between 8 bit levels
0 and 127. It isformed by dividing the image background by two.

TMG_DRAW BG_OPAQUE Text isdrawn on amid gray background level of 8 bit intensity 127.
The text colour dwColour is one of the sixteen VGA colours :

TMG_BLACK, TMG_BLUE, TMG_GREEN, TMG_CYAN,

TMG_RED, TMG_MAGENTA, TMG_YELLOW, TMG_WHITE,

TMG_GRAY, TMG_LIGHT BLUE, TMG_LIGHT_GREEN, TMG_LIGHT_CYAN

TMG_LIGHT RED, TMG_LIGHT MAGENTA, TMG_LIGHT YELLOW, TMG_LIGHT WHITE.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual. The function returns an error if the text will not fit wholly within the image.

EXAMPLES
The following code writes the text string “Hello” to theimage :
struct sTMs Font *psTmgFont = NULL;/* Pointer to TMG font structure */
TMG draw _get _ptr(TMG_FONT_STRUCT_9x14, (void **)&psTngFont);

TMSG draw_t ext (hl mage, "Hell o", psTnmgFont, 10, 10,
TMG_DRAW BG_TRANSPARENT, TMG LI GHT_WHI TE) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_draw_get ptr, TMG_draw_timestamp.

TMG Programmer’s Manual v4.0.4 TMG_draw_timestamp 93

TMG_draw_timestamp

USAGE

Terr TMG_draw_timestamp(Thandle himage, struct STMG_Font * psTmgFont, ui32 dwX, ui32 dwyY, ui32
dwMode, ui32 dwColour)

ARGUMENTS
hlmage Handle to the image.
psTmgFont Pointer to TMG font structure.
dwX Pixel number (1..N) in image of top left point of timestamp.
dwy Line number (1..N) inimage of top left point of timestamp.
dwMode Background mode and “Flash Colon” mode.
dwColour Text colour.

DESCRIPTION

This function draws a timestamp string (of theform “16: 03: 09 04Jan02") in TMG font psTmgFont into
the image himage starting at the point (dwX, dwyY).

dwModeis either TMG_DRAW BG_TRANSPARENT or TMG_DRAW BG_OPAQUE as described in
TMG_draw_text.

The flag TMG_DRAW _FLASH COLON may be ‘or’ ed with the background mode setting, to prevent the
colons being displayed if the time is an even number of seconds. This gives a dynamic on/off flashing effect
when the timestamp is displayed on successive frames over several seconds.

See TMG_draw _text for a description of dwColour.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual. The function returns an error if the timestamp string will not fit wholly within the image.

EXAMPLES
The following code writes a timestamp string (transparent mode with flashing colons) to the image :
struct sTM5 Font *psTmgFont = NULL;/* Pointer to TMG font structure */
TMG draw _get _ptr(TMG_FONT_STRUCT_9x14, (void **)&psTngFont);
TMG draw ti nest anp(hl mage, psTngFont, 10, 10, TMG DRAW BG TRANSPARENT
| TMG_DRAW FLASH COLON, TMG LI GHT_WHI TE);
BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_draw_get ptr, TMG_draw_text.

TMG Programmer’s Manual v4.0.4 TMG_image _calc_total_strips 94

TMG_image_calc_total_strips

USAGE
Terr TMG_image _calc_total_strips(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns the total number of stripsin the image, based on the internal image parameters height and
lines this strip. Theimage height is divided by the number of lines_this_strip and rounded up to the next
whole number if necessary.

For exampleif an image has a height of 128 lines and lines this strip is set to 8, the number of strips returned
would be 16. If the height was 127, the number of strips would still be 16, but the TMG functions processing
the image would automatically change the internal parameter lines_this strip to 7 for the last strip. Note
therefore that this would need to be reset if repeatedly using a strip processing loop.

TMG_image set parameter is used to set thelines this strip parameter. The height of the image would
normally be automatically calculated from loading the image.

RETURNS

Thetotal number of stripsin the lower 16 bits of the 32 bit return value, otherwise an error return as defined
in the Error Returns section at the start of this manual.

EXAMPLES

Thisexamplereadsin a TIFF filein strips savesit asits mirror image. Notethat a “dummy” read is needed
first to determine the height of the image so that the number of strips can be calculated:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);

/* The outfil enanme paranmeter gets transferred to hQutlnmage */

TMG_ i nage_set _outfil enane(hlmage, “sky _mirror.tif”);

/* open the file to read the image height */
TMG_ i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG_ i nage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at tinme */
TMG_ i nage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG_ i nage_cal c_total _stri ps(hl mage);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG_ i mage_r ead(hl mrage, TMG NULL, TMG RUN);
TMG I P_mirror_i mage(hl mage, hQutlnmage, TMG RUN);
TMG i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

}
TMG_ i nage_set _paraneter (hlnmage, TMG LINES TH S STRIP, 8); /* just in case */

Note that if the image height of “sky.tif” did not divide exactly by 8, the TMG_LINES THIS STRIP
parameter of himage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

BUGS/NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.4 TMG_image _calc_total_strips 95

SEE ALSO
TMG_image set_parameter.

TMG Programmer’s Manual v4.0.4 TMG_image_check 96

TMG_image_check

USAGE
Terr TMG_image_check(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function performs a simple check on the image - checking that the image format and depth are
compatible. For example a TMG_RGB16 image should have a depth of 16. It also calculates Himage's
internal parameter bytes per_line. The bytes per_line parameter can be read using

TMG_image get parameter with TMG_BYTES PER LINE. Thiscan be useful for accessing the image data
directly from an application.

Thisfunction israrely needed in an application. but it is sometimes useful as a confidence check.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

No known bugs.

SEE ALSO
TMG_image get_parameter.

TMG Programmer’s Manual v4.0.4 TMG_image _conv_LUT_destroy 97

TMG_image _conv_LUT_destroy

USAGE
Terr TMG_image conv_LUT_destroy(uil6 LUT_type)

ARGUMENTS
LUT type A look up table type as defined below used by TMG_image_convert.

DESCRIPTION
This function destroys a conversion LUT selected by one of the parameters from the list below.

LUT _type can be one of the following:

TMG_Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG_Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG_RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG_RGB16) to an 8 hit
paletted image.

TMG_YUV422_TO_PALETTED_LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG_YUV422 TO RGB15 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a
15 bit RGB image (TMG_RGB15).
TMG_YUV422 TO RGB16 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a

16 bit RGB image (TMG_RGBL16).
The memory used by the LUTsis freed when the LUT is destroyed.
Note that the actual LUTs are internal globalswithin the TMG library and not related to any other structure.

TMG_image destroy(TMG_ALL_HANDLES) will automatically destroy all TMG structures including these
LUTs.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment destroys a previously created conversion LUT:

/* destroy the conversion LUT */
TMG_ i mage_conv_LUT_destroy(TMG_YUv422_TO RGB16_LUT);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image conv_LUT_generate, TMG_image destroy.

TMG Programmer’s Manual v4.0.4 TMG _image _conv_LUT_generate 98

TMG_image _conv_LUT generate

USAGE
Terr TMG_image_conv_LUT_generate(Thandle Himage, uil6 LUT type)

ARGUMENTS

Himage Handle to an image.

LUT type A look up table type as defined below and used by TMG_image _convert.
DESCRIPTION

This function generates the appropriate LUT for use by the function TMG_image_convert when it is used
with the flag TMG_USE_LUT. If therelevant LUT has not been generated, thefirst call to

TMG_image _convert will automatically generatethe LUT. The function TMG_image conv_LUT_generate
is sometimes useful to generate the LUT in advance of actually performing the conversion.

LUT _type can be one of the following:

TMG_Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG_Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG_RGB16_TO_PALETTED_LUT Used to convert a 16 bit RGB image (TMG_RGBL16) to an 8 hit
paletted image.

TMG_YUV422 TO PALETTED_LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 hit paletted image.

TMG_YUV422 TO RGB15 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to a
15 bit RGB image (TMG_RGB15).
TMG_YUV422 TO RGB16 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a

16 bit RGB image (TMG_RGBL16).
The memory used by the LUTsis dynamically allocated when the LUT is generated.

Under Windows 3.1, the 15 and 16 bit YUV 4:2:2 LUTsare each 64K in size. Under true 32 bit memory
models (al other operating systems), the 15 and 16 bit output LUTs are 1 Mbyte in size, resulting in better
quality colour conversion. The YUV 4:2:2 to paletted LUT isaways 32K in size under all memory models.

When generating a LUT for conversion to a paletted image, Himage must contain the desired palette. For
non-paletted conversion LUTSs, Himage is not used (but it still needsto be avalid image). See
TMG_cmap_generate for details on creating palettes (or colourmaps)

The LUTs used by the conversion function, TMG_image _convert, are not related to the “TMG_LUT” suite of
functions. The LUTsareinterna globalswithin the TMG library and not related to any other structure. Note
also that all of the above LUTs can be used in parallel - they are all independent of each other.

TMG _image conv_LUT destroy can be used to destroy any specific conversion LUT(s) that have be
generated (i.e. to free the allocated memory - or to force their regeneration).

TMG_image destroy(TMG_ALL_HANDLES) will automatically destroy all TMG structures including these
LUTs.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

TMG Programmer’s Manual v4.0.4 TMG _image _conv_LUT_generate 99

EXAMPLES

The following code fragment generates the conversion LUT for converting YUV 4:2:2 data to the 16 bit RGB
format (TMG_RGB16) in advance of using the function TMG_image_convert (for example when the
application isfirst started):

/* Generate the LUT */
if (ASL_is_err(TMG i nage_conv_LUT generate(H nage, TMG YUV422 TO RGB16_LUT)))
printf(“Failed to generate LUT");

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image convert, TMG_image conv_LUT_destroy, TMG_image conv_LUT_save,
TMG_image conv_LUT _load.

TMG Programmer’s Manual v4.0.4 TMG_image conv_LUT load 100

TMG_image _conv_LUT load

USAGE
Terr TMG_image _conv_LUT load(Thandle Himage, uil6 LUT type, char *filename)

ARGUMENTS
Himage Handle to an image.
LUT type A look up table type as defined below and used by TMG_image _convert.
filename Pointer to a NUL terminated ASCI| text string.

DESCRIPTION

This function loads a previously generated and saved LUT from afile called filename. Himageisonly used
when loadinga TMG_Y16_TO _PALETTED_LUT. Himage contains the actual data width of the grayscale
data - for example, although TMG_Y16 is the pixel format, there may only be 10 bits of valid grayscale data,
resulting in a corresponding LUT size of 1024.

Note that the actual LUTs are internal globals withinthe TMG library and not related to any other structure.
The LUT typeisdetermined by LUT_type and can be one of the following:

TMG_Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG_Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG_RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG_RGB16) to an 8 hit
paletted image.

TMG_YUV422_TO_PALETTED_LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG_YUV422 TO RGB15 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a
15 bit RGB image (TMG_RGB15).
TMG_YUV422 TO RGB16 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a

16 bit RGB image (TMG_RGB16).

The use of this function can save time in the regeneration of aLUT. (Some LUTs are quite slow to generate -
up to 20 seconds depending on the type of machine). It isalso useful if an optimum colourmap (and LUT)
have been generated using a test image that may not always be available. Note the colourmap can be saved
and re-loaded with an image if a paletted file format isused (TMG_PALETTED).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment generates, saves and then re-loads a colourmap and a LUT:

/* Cenerate an optimm col ourmap */
TMG _cmap_gener at e(hl mage, 256, TMG_RUN);
TMG_ i mage_conv_LUT_gener at e(hl mage, TMG YUV422_TO PALETTED LUT);

/* now save our optimm col ourmap and LUT */
TMG i mage_convert (hl mage, hPal | mage, TMG PALETTED, 0, TM5 RUN);
TMG i mage_set _outfil enane(hPal | mage, “palette.tif”);

TMG Programmer’s Manual v4.0.4 TMG _image conv_LUT load 101

TMG i mage_write(hPal | mage, TMG NULL, TMS TIFF, TMG RUN);
TMG i mage_conv_LUT_save(hPal | mage, TMG YUV422 TO PALETTED LUT, “yuv2p.lut”);

/* load our previously saved col ourmap and LUT */

TMG i mage_set _infil enane(hPal | rage, “palette.tif”);

/* we only need to read the palette - not the whole imge */

TMG_ i nage_set _par anet er (hPal | mage, TMG_HEI GHT, 0);

TMG i mage_r ead(hPal | mage, TMG NULL, TMG RUN);

TMG_ i mage_conv_LUT_| oad(hPal | mage, TMG YUV422 TO PALETTED LUT, “yuv2p.lut”);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image conv_LUT_save.

TMG Programmer’s Manual v4.0.4 TMG _image conv_LUT_save 102

TMG_image _conv_LUT_save

USAGE
Terr TMG_image _conv_LUT_save(Thandle Himage, uil6 LUT type, char *filename)

ARGUMENTS
Himage Handle to an image.
LUT type A look up table type as defined below and used by TMG_image _convert.
filename Pointer to a NUL terminated ASCI| text string.

DESCRIPTION

This function saves an already generated LUT to afile called filename. Himageis only used when saving a
TMG_Y16 TO PALETTED_LUT. Himage containsthe actual data width of the grayscale data - for example
although TMG_Y16 isthe pixel format, there may only be 10 bits of valid grayscale data, resulting in a
corresponding LUT size of 1024.

Note that the actual LUTs are internal globals withinthe TMG library and not related to any other structure.
The LUT typeisdetermined by LUT_type and can be one of the following:

TMG_Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG_Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG_RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG_RGB16) to an 8 hit
paletted image.

TMG_YUV422_TO_PALETTED_LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG_YUV422 TO RGB15 LUT Used to convert a16 bit YUV 4:2:2 image (TMG_YUV422) to a
15 bit RGB image (TMG_RGB15).
TMG_YUV422 TO RGB16 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to a

16 bit RGB image (TMG_RGB16).

The use of this function can save time in the regeneration of aLUT. (Some LUTs are quite slow to generate -
up to 20 seconds depending on the type of machine). It isalso useful if an optimum colourmap (and LUT)
have been generated using a test image that may not always be available. Note the colourmap can be saved
and re-loaded with an image if a paletted file format is used (TMG_PALETTED).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

See TMG_image _conv_LUT _load for an example piece of code.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image conv_LUT _load.

TMG Programmer’s Manual v4.0.4 TMG_image_convert 103

TMG_image_convert

USAGE
Terr TMG_image_convert(Thandle Hin_image, Thandle Hout_image, uil6 out_format, ui32 flags, uil6
TMG_action)
ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
out_format The required output pixel format.
flags Flags- suichas TMG_USE LUT, TMG_IS DIB.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function converts the input image, Hin_image, to the output image Hout_image, such that the output
image’ s pixel format is defined by out_format. flagsis used to control the type of conversion used and/or the
type of output image generated.

This function would be used to convert the pixel format of an image to a suitable format to allow it to be
saved, displayed or processed.

Acceptable output pixel formats are listed below with a brief description. For a more detailed description of
pixel formats, see “Pixel Formats and Return Values™ at the start of this manual.

TMG_Y8 8 hit grayscale.

TMG_Y16 9t0 16 bits of grayscale. Actual number of grayscale bits given by the
internal parameter data_width (see TMG_DATA WIDTH in
TMG_image set parameter).

TMG_YUV422 YUV 4:2:2 colour image format.

TMG_PALETTED 8 bit paletted data.

TMG_RGBS8 8 hit colour defined as RRRGGGBB.

TMG_RGB15 15 bit colour defined as RRRRRGGGGGBBBBB.

TMG_RGB16 16 hit colour defined as RRRRRGGGGGGBBBBB

TMG_RGB24 24 bit colour with byte ordering RGB.

TMG_BGR24 24 bit colour with byte ordering BGR.

TMG_RGBX32 32 bit colour with byte ordering RGBX.

TMG_BGRX32 32 bit colour with byte ordering BGRX.

TMG_XBGR32 32 bit colour with byte ordering XBGR.

TMG_XRGB32 32 bit colour with byte ordering XRGB.

TMG_HS Hue, saturation and intensity representation.

TMG_Y8_OR RGB24

Thisisaspecial “format” used to indicate that a paletted image should
converted to either TMG_Y8 or TMG_RGB24 - depending on whether the
paletted image is grayscale or colour. See below for details.

TMG Programmer’s Manual v4.0.4 TMG_image_convert 104

Acceptable flags are listed and described below:

TMG _USE LUT Thisflag isonly valid for colourspace conversion between
TMG_YUV422, RGB and Y 8 to paletted formats. It indicates
that aLUT should be used instead of matrix multiplication. A
LUT isfaster but the quality of conversionis not as good.

TMG_IS DIB Thisflag indicates that image data in the output image should be
in the DIB format based on the selected pixel format, out_format.
Thisis used when the output image is to be displayed an aDIB
image (i.e. under Windows NT/95/3.1).

0 Anything else, i.e. no special flag required.

The various types of conversion are listed below:

SIMPLE PIXEL FORMAT CONVERSION

Thisisthe simplest group of conversions and refers to conversion between pixel formats without colourspace
conversion or any other flags used. For example conversion from TMG_Y8 to TMG_RGB16 to suit a
particular graphics card, or from TMG_RGBX32 to TMG_RGB24 so that the image can be saved asa TIFF
file. See”Simple Pixel Format Conversion” in the examples section below.

The formula used for conversion between colour RGB formats and grayscaleis:
Y =0.299R + 0.587G + 0.114B
The formula used for conversion between colour RGB formatsand CMYK is:

C=255-R
M=255-G
Y =255-B
K=0

COLOURSPACE CONVERSION

This refersto any conversion either to or from TMG_YUV422. Thisformat is a different colourspace (see
Glossary for definition) and requires the use of either multiplication to achieve full resolution or aLUT to
achieve reduced resolution. This type of conversion is usually needed from TMG_YUV422 to an RGB format
- for example acquisition from a colour frame grabber or JPEG decompression hardware. Conversionis
rarely needed from RGB colourspace to YUV colourspace. Hence any conversion from RGB (or TMG_Y8)
colourspace to TMG_YUV422 will always use the (slow but accurate) matrix multiplication method. See
“Conversion to YUV 4:2:2" in the examples section below. The conversion from TMG_YUV422 to RGB
colourspace has the option of using matrix multiplication or a software LUT. To do the conversion using a
LUT, flagsisset to TMG_USE_LUT. If the conversion LUT is not already generated it will be automatically
generated the first time the function is called (see TMG_image _conv_LUT_generate). The size of thisLUT
(and hence the quality) vary slightly between operating systems (see “ Operating System Issues’ at the start of
this manual).

When converting from TMG_YUV422 to a paletted image, the required pal ette must be set up in advance of
the LUT generation. Thisisbecausethe LUT generation function needs to know the target colourmap (or
palette) in advance, so it knows what colours (actually indexes into the colourmap) that the input YUV 4:2:2
data should be mapped to. See “Conversion from TMG_YUV422 to Paletted” in the examples section below.

For a detailed example of YUV 4:2:2 to paletted conversion, see the extended examplesin the “Sample
Applications’ section for more details. For conversion from YUV 4:2:2 to RGB formats, see “Conversion
from YUV 422" in the examples section below.

TMG Programmer’s Manual v4.0.4 TMG_image_convert 105

The formula used for conversion from RGB formatsto YUV 4:2:2 isasfollows:

Y =0.299R + 0.587G + 0.114B
U=-0.169R - 0.331G + 0.500B
V = 0.500R - 0.419G - 0.081B

The formula used for conversion from YUV 4:2:2 and RGB formatsis as follows:

R=Y +0U + 1402V
G=Y-0.344U - 0.714V
B=Y+1772U + 0V

In both of the above formulas, R, G, B and Y all have the range 0..255, whilst U and V have the range -128 to
+127. (The U and V components are level shifted by adding 128 to allow them to be stored as an 8 hit
unsigned number.)

Thereisaso limited support for HSI colourspace. See BUGS/ NOTES below. The formulas used to
convert from YUV 4:2:2to HSI are:

H =tan-1(B-Y)/(R-Y) (Implemented using the Chromakeying UV_to_hue LUT.)
Note: Small values (noise) are trapped in the LUT and set to 180 degrees.
S=255- MIN(R,G,B) (Simple approximation.)

=Y

Seealso TMG_SPL_HS to RGB pseudo_colour.

PALETTED (COLOURMAPPED) CONVERSION

This refersto any conversion either to or from TMG_PALETTED. For conversion from a paletted image, the
output image format should be TMG_Y8 OR RGB24. Thisisaspecia format, that isn't really a pixel
format, but away of instructing the conversion function that it should convert to either TMG_Y8 or
TMG_RGB24 depending on whether the paletted image is grayscale or colour. (It determinesthis
automatically during conversion.) See“Conversion from Paletted” in the examples section below.

To convert to a paletted image involves the generation of a colourmap (or palette) first of all. Thiscan be
done several ways using the TMG colourmap (“TMG_cmap”) functions (see TMG_cmap_generate and
related).

The conversion from TMG_YUV422 to paletted always uses a LUT and is described in the “ Colourspace
Conversion” section above. See “Conversion from TMG_YUV422 to Paletted” in the examples section
below.

A LUT can also be used to convert directly from TMG_Y8, TMG_Y16 or TMG_RGB16 to TMG_PALETTED.
Thisisuseful for fast display to paletted displays. This methodology is used extensively in the Snapper
Solaris SDK. See “Conversion from TMG_Y8 to Paletted - using aLUT” in the examples section below.
Note that given suitable acquisition hardware, the grayscale to paletted conversion LUT could be loaded into
ahardware LUT thus saving time in paletted conversion.

There is an aternative method to using a LUT, suitable for TMG_Y8 and TMG_RGB24. The agorithmis
based upon generating an optimum palette, then mapping each input pixel to its closest colour in the palette.
For TMG_Y8 the quality is the same asthe LUT method but the conversion takes marginally longer. For
TMG_RGB24 this is the only method of directly generating a paletted image. See “Conversion from
TMG_RGB24 to Paletted” in the examples section below.

CONVERSION TO DIB

If theflag TMG_IS DIB is used during image conversion, the output image format will be aDIB (device
independent bitmap). Thisisaone way process - there is currently no function to convert from aDIB back to
an ordinary TMG image. This conversion is designed to be used for display and printing under the
appropriate operating systems (Windows NT/95/3.1). See “Conversion to DIB” in the examples section
below.

TMG Programmer’s Manual v4.0.4 TMG_image_convert 106

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

SIMPLE PIXEL FORMAT CONVERSION

This example shows how to convert between simple pixel formats in the same (RGB) colourspace:

/* hSrclmage is a TMG RGBX32 image, we will convert it to TMG RGBL16,
* ready for display (the display is format RGB16).

* Note we are processing in 1 strip (i.e. whole inage at once).

>/

TMG_i nage_convert (hSrcl nage, hDi spl mnage, TMG RGB16, 0, TMG RUN);

CONVERSION TO YUV 4:2:2

This example shows how to convert from RGB colourspace to YUV colourspace:
TMG_ i mage_convert (hSrcl mage, hYWVI mage, TM5 YW422, 0, TMG RUN);

For amore detailed example, see the chroma keying examplesin the “ Sample Applications’ section.

CONVERSION FROM YUV 4:2:.2TO RGB16 - WITHOUT A LUT

/* Sl ow but accurate */
TMG_i mage_convert (hYUVI nage, hRGBI mage, TMG RGB16, 0, TMG RUN);

CONVERSION FROM YUV 4:2:2TO RGB16 - USING A LUT

/* Fast but |ess accurate */
TMG i mage_convert (hYUVI mage, hRGBI mage, TMs RGB16, TM5 USE LUT, TMG RUN);

CONVERSION FROM YUV 4:2:2TO PALETTED

This example shows how to convert from YUV 4:2:2 to a paletted image using, such that the palette is made
up of 3 bits of red, 3 bits of green and 2 bits of blue;

/* map to an equal mx of red, green. blue */

TMG _cnmap_set _type(hYUVI nage, TMG 332_RGB);

/* force the generation of a new LUT within TMG.i mage_convert */
TMG_i nage_conv_LUT _destroy(TMG YUV422_ TO PALETTED LUT);

/* the first call will be slower - as its generating the LUT */
TMG_ i nage_convert (hYUVI nage, hPal | rage, TMG PALETTED, TMG USE LUT, TMG _RUN);

For a more detailed example, in which certain colours are reserved and optimum colourmap generation, see
the extended examplesin the “Sample Applications’ section.

CONVERSION FROM PALETTED

This example shows how to convert from a paletted image to either an RGB or grayscale one:

TMG i mage_set _infil ename(hSrcl nage, “sky.tif”);

TMG_ i nage_set _par anet er (hSrcl mage, TMG _HEI GHT, TMG_AUTO_HEI GHT) ;

TMG i mage_r ead(hSrcl mage, TMG NULL, TMG RUN);

if (TMG_i mage_get _paraneter(hSrcl mage, TMG Pl XEL_FORMAT) == TMG_PALETTED) ({
printf(“\nConverting frompaletted...”);
TMG i mage_convert (hSrcl mage, hlmage, TMG Y8 _OR_RGB24, 0, TM5 RUN);

}

el se
TMG i mage_nove(hSrcl mage, hl mage);

TMG Programmer’s Manual v4.0.4 TMG_image_convert 107

Pi xel Format = (ui 16) TMG_ i mage_get _par anet er (hl mage, TMG Pl XEL_FORVAT) ;
if (Pixel Format == TMG RGB24)

printf(“\nWe have a 24 bit col our inage”);
el se

printf(“\nWe have a grayscal e i mage”);

CONVERSION FROM GRAYSCALE TO PALETTED - USING A LUT

This example shows how to convert from TMG_Y8 to TMG_PALETTED:

/* set colourmap to a grayscale ranp */

TMG cnap_set _type(hYl nmage, TMG GRAYSCALE_ RAMP) ;

/* force the generation of a new LUT within TMG.i mage_convert */
TMG_i nage_conv_LUT _destroy(TMG Y8 _TO PALETTED LUT);

/* the first call will be slower - as its generating the LUT */
TMG_ i mage_convert (hYl nmage, hPal | mage, TMG PALETTED, TMG USE LUT, TMG RUN);

CONVERSION FROM RGB24 TO PALETTED

This example shows how to convert from TMG_RGB24 to a paletted image, such that the palette is optimised
to the colours contained in the source image:

/* generate the optinmum col ourmap */

TMG_cnap_gener at e(hRGBI mage, 256, TMG _RUN);

TMG i mage_convert (hRGBI mage, hPal | mage, TM5 PALETTED, 0, TMG RUN);
CONVERSION TO DIB

This example shows how to convert to a DIB suitable for display:

/* 24 bit colour DI Bs use the BCGR24 pixel format */
TMG_i mage_convert (hRGBI nage, hDI Bl mage, TMG BGR24, TMG IS DIB, TMG RUN);

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

Not all combinations of image format conversions are supported. If you come across an unsupported
conversion option which you require please fax in the Bug Report Form (in the Appendices to this manual)
and it will be fixed in the next release (or sooner via the Bulletin Board System).

Thereislimited support for TMG_Y16.
The conversion to DIB only generates DIBs with pixel format TMG_BGR24.
There's limited support for TMG_HS. The only conversion optionisto TMG_HS from TMG_YUV422.

Dithering is currently not supported as a conversion flag option.

SEE ALSO

TMG _image conv_LUT generate, TMG_image conv_LUT destroy, TMG_cmap_generate,
TMG_SPL_HSY to RGB_pseudo_colour.

TMG Programmer’s Manual v4.0.4 TMG_image_copy 108

TMG_image_copy

USAGE
Terr TMG_image_copy(Thandle Hin_image, Thandle Hout_image)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to the output image.

DESCRIPTION

This function copies the image, consisting of various parameters and the image data itself, from Hin_image to
Hout_image. If Hout_image has any image data associated with it and it is not locked (see

TMG_image set flags), it isfreed and new memory is allocated for the image. If the image memory in
Hout_image islocked, then it will be preserved and the image data from Hin_image is copied to thisareain
Hout_image. Note that there must be sufficient memory already allocated in Hout_image if it islocked,
otherwise a general protection fault or similar will occur.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

Thisexamplereadsin a TIFF filein strips, copiesit and savesit. Notethat a “dummy” read is needed first to
determine the height of the image so that the number of strips can be calculated:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_copy.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG_ i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);
TMG i mage_copy(hl mage, hCut | mage);
TMG i mage_write(hQutlmage, TMG NULL, TMG TIFF, TM5 RUN);
}
TMG_ i mage_set _paraneter (hl nage, TMG LINES THIS_STRIP, 8); /* just in case */

Note that if the image height of “sky.tif” did not divide exactly by 8, the TMG_LINES THIS STRIP
parameter of himage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

BUGS/NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.4 TMG_image_copy 109

SEE ALSO

TMG_image _move.

TMG Programmer’s Manual v4.0.4 TMG_image _create 110

TMG_image_create

USAGE
Terr TMG_image _create()

ARGUMENTS

None.

DESCRIPTION

This function creates a Timage structure by the use of malloc, and returns a handle to that Timage structure.
(seethefile “tmg.h” for the actual structure definition). It also performs some initialization - that is characters
strings are set to ‘\O' and the image data pointer set to NULL. The structure variable lines_this strip is set to
8. Note that no memory is created for the image itself - thisis performed by TM G functions when loading or
processing an image.

RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates an image and gets a handle to it:
Thandl e hl mage; /* Handle to an image structure */

if (ASL_is_err(hlmage = TMG_ i mage_create()))
printf(“Failed to create an inmge”);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image destroy, TMG_JPEG image create, TMG_WVLT_image create.

TMG Programmer’s Manual v4.0.4 TMG_image_destroy

111

TMG_image_destroy

USAGE
Terr TMG_image_destroy(Thandle Himage)

ARGUMENTS
Himage Handle to an image or TMG_ALL_HANDLES

DESCRIPTION

This function destroys an image structure (including JPEG images) by freeing al the memory associated with
that structure.

If the parameter TMG_ALL_HANDLES s used, all TMG structures are destroyed and their associated handles
freed. Notethat not only are all images destroyed but all other TM G structures too - that is LUTSs, chroma
keying structures etc. Thisisaconvenient way of destroying everything with just one function call - usually
on program exit.

Any images with locked memory (TMG_LOCKED) will have that memory automatically freed prior to the
image being destroyed.

Care must be taken if another application is using the TMG library in a multi-threaded environment. For
example, it may be using some TMG LUT structures, and the use of TMG_ALL_HANDLESwould destroy
these without the other application knowing about it. In this type of environment, each application would
destroy only its own image handles and then call TMG_image_destroy with the parameter

TMG_ALL DATA STRUCTURES. Thiswould destroy the data structures only if there were no image
handles in use (and then return ASL_OK), otherwise, if there were image handlesin use, it would return
AS._ERR IN_PROGRESS

Care must also be taken with memory that has been allocated by the application and not the TMG library. If
memory has been allocated by the application and used by the TMG library (in an image structure), it must be
freed at the application level and the internal image pointer set to NULL before calling TMG_image _destroy.
One of the examples below shows how thisis done.

RETURNS

ASL OK or ASL_ERR IN_PROGRESS (see above).

EXAMPLES

The following code destroys a previously created image:
Thandl e hl mage;

/* Destroy the inmmge structure */
TMG_i nage_dest roy(hl mage) ;

/* Destroy all TMG structures */
TMG_i nage_dest roy(TMG_ALL_HANDLES) ;

This next example shows how image memory is allocated and destroyed at the application level and not in the
TMG library:

Thandl e hl mage;
IM U 8 *plmageMenory; /* “ny” inage nenory */

hl mage = TMG_ i nage_create();

pl mageMenory = mal | oc(100000);

TMG_ i mage_set _ptr(hl mage, TMG | MAGE_DATA, pl nageMenory);
TMG i mage_set _fl ags(hl mage, TMG LOCKED, TRUE);

TMG Programmer’s Manual v4.0.4 TMG_image_destroy 112

/* W now have hl mage using our nenory that the TMG library will not touch */

/* To destroy it we nust free it and set the pointer to NULL */
free(pl mageMenory) ;

TMG i nage_set _ptr (hl mage, TMG | MAGE_DATA, NULL);

TMG i mage_set _fl ags(hl mage, TMG LOCKED, FALSE);

TMG i nage_dest roy(hl mage) ;

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image create, TMG_image set flags.

TMG Programmer’'sManua v4.0.4 TMG_image find_file format 113

TMG_image_find_file_format

USAGE

Terr TMG_image find_file format(char *filename)

ARGUMENTS

filename Name of an image file.

DESCRIPTION

This function attempts to find the file format of an image file called filename. This function is used internally
by TMG_image read.

RETURNS

On success one of the following file typesis returned as a#define: TMG_TIFF, TMG_TARGA,
TMG_JPEG, TMG_EPS TMG_BMP; otherwise an error return as defined in the Error Returns section at
the start of this manual.

EXAMPLES

The following code fragment attempts to find the image file format:

ui 32 dwResul t;
ui 16 wFi | eFormat = 0O;

Result = TMG inage_find file_format(“sky.tif”);
if (ASL_is_err(dwResult))

printf(“Failed to recognise the file type”);
el se

wWFi | eFormat = ASL_get _ret (dwResul t);

if (WFileFormat == TMG Tl FF)
printf(“The file is a TIFF file");

BUGS/NOTES
This function is not guaranteed to work on image files that have not been generated by the TMG library (but
in generd it should work).

SEE ALSO
TMG_image read.

TMG Programmer’s Manual v4.0.4 TMG_image free data 114

TMG_image free data

USAGE
Terr TMG_image free data(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function frees the image data used internally by Himage. This may include raw image data or JPEG
compressed data. If the memory islocked (i.e. the TMG_LOCKED flag is set to true), freeing the data will
have no effect (but ASL_OK will till be returned as thisis not regarded as an error).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment, lifted from the Windows 3.1 application D16, frees the device dependent
bitmap to save memory:

if (D16. m bModeChange == TRUE)

{
/* Free the inmage nenory associated with the DDB i mage to save nenory */
TMG i mage_set _fl ags(D16. m hDDBI nage, TMG LOCKED, FALSE);
TMG i mage_free_dat a(D16. m hDDBI nage) ;
}
BUGS/NOTES

Thisfunction israrely needed is a user application.

SEE ALSO
TMG_image malloc_a strip, TMG_image set_flags.

TMG Programmer’s Manual v4.0.4 TMG_image get flags

115

TMG_image _get_flags

USAGE
Thoolean TMG_image get_flags(Thandle Himage, uil6 type)

ARGUMENTS
Himage Handle to an image.
type Flag type.
DESCRIPTION

This function returns the state (TRUE or FALSE) of the flag, selected by type, in Himage.
The flag types are described in TMG_image _set_flags.

RETURNS
TRUE or FALSE reflecting the flag status.

EXAMPLES

The following code shows how afileisread then tested to seeif its a JPEG file:

TMG i mage_set _par anet er (hSrcl mage, TMG _HEI GHT, TM5 _AUTO_HEI GHT) ;

if (TMG.i mage_read(hSrclmage, NULL, TMG RUN) !'= ASL_OK) ({
printf(“Failed to read file");

)

i

f (TMG_i nage_get _fl ags(hSrclmage, TMG | S JPEG == TRUE)

/* deconpress the imge */

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image set flags, TMG_image convert, TMG_image set parameter.

TMG Programmer’s Manual v4.0.4 TMG_image _get_infilename, 116
TMG_image_get_outfilename

TMG_image_get_infilename,
TMG_image_get_outfilename

USAGE
char *TMG_image get_infilename(Thandle Himage)
char *TMG_image get_outfilename(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

These functions return a pointer to the input/output file name associated with Himage. The pointer returned
may point to relocatable memory in the image structure, therefore the contents should be copied to memory
within the application.

The file name may also contain afull path to thefile - for example “ c:\snapsdk\apps\imvitest.tif”.

RETURNS
A pointer to aNUL terminated string if Himage is valid, otherwise it returns NULL.

EXAMPLES
char szFi |l eNane[256] ;
TMG i mage_set _infil ename(hl mage, “sky.tif”);

strcpy(szFil eNane, TMG i mage_get i nfil enane(hl mage));
printf(“File = %", szFileNane);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image_set_infilename,
TMG_image_set_outfilename.

TMG Programmer’s Manual v4.0.4 TMG_image _get_parameter

117

TMG_image_get_parameter

USAGE
ui32 TMG_image get parameter(Thandle Himage, uil6 parameter)

ARGUMENTS
Himage Handle to an image.
parameter Parameter type.
DESCRIPTION

This function returns the value of an internal parameter from Himage selected by parameter. The parameter
isaways returned as a 32 bit unsigned integer although some of the parameters are stored as 16 bit unsigned

integers internally.

The parameter types are described in TMG_image_set_parameter, apart from the read only parameter
TMG_LIBRARY _REV_LEVEL. This parameter returnsthe revision level of thelibrary asa5 digit number
which represents major.minor.sub-minor. For example 32002 means version 3.2 rev. 2. Thisis useful to

check that the correct revision level of DLL is present.

RETURNS
The parameter selected by parameter as an unsigned 32 bit integer (ui32).

EXAMPLES
The following code fragment reads a file and detects whether its a 24 bit colour image:

ui 16 Pi xel For mat ;

TMG i mage_set _infil ename(hl mage, “car.tif”);
TMG i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG _AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
Pi xel Format = (ui 16) TMG_ i mage_get _par anet er (hl mage, TMG Pl XEL_FORVAT) ;
if (Pixel Format == TMG RGB24)
printf(“lts a 24 bit col our inmage”);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image set parameter, TMG_image set_flags.

TMG Programmer’s Manual v4.0.4

TMG_image get ptr 118

TMG_image _get_ptr

USAGE

void *TMG_image get_ptr(Thandle Himage, uil6 type)

ARGUMENTS

Himage Handle to an image.

type The pointer type (seelist below).
DESCRIPTION

This function returns the internal pointer selected by type, in the image structure referenced by Himage. The
return value must be cast to the required pointer type (shown below).

TMG_IMAGE_DATA and TMG_JPEG_DATA are the most likely onesto be used. The remainder are
implemented for internal library use (and compl eteness).

Getting access to the image data via a pointer can be a useful way of reading and setting individual pixels.
See the “ Sample Application” sectionsin this manual.

The possible pointer types are as follows:

TMG_IMAGE_DATA
TMG_JPEG_DATA

TMG_JPEG_CURRENT_PTR

TMG_CMAP_STRUCT

TMG_PIMAGE_STRUCT
TMG_PIMAGE_PJPEG_STRUCT

TMG_JPEG_USER_COMMENT

Returns the pointer to the raw image data. The return value should
be cast to IM_UI8*, IM_UI16* or IM_UI32*.

Returns the JPEG compressed data pointer. The return value should
be cast to IM_UI8*.

Returns the current pointer to JPEG data. (Thisis used for the replay
of motion JPEG sequence files.) The return value should be cast to
IM_UI8*.

Returns the pointer to the colourmap structure (struct Tcmap*).
Under Windows 3.1 the structure definition is struct Tcmap far*.
(There is atype defined as CMAP_PTR* that automatically includes
the far keyword when appropriate). The return value should be cast
to CMAP_PTR*.

Returns the pointer to the image structure. The return value should
be cast to struct Timage*.

Returns the pointer to the JPEG structure. The return value should
be cast to struct Tjpeg*.

Returns a pointer to afixed length character string (of length
TMG_JPEG_USER_COMMENT_LEN (see “tmg_api.h" for actual
length) extracted from the JFIF stream on reading a JPEG image.
For JPEG images generated by the TMG library, this could be used
to tag images with timestamp information.

See the section on “ Operating System Issues’ for afuller description of defined typessuch asIM_UI8. See
aso thefile “tmg.h” for the actual structure definitions mentioned above.

RETURNS

The selected pointer as avoid* on success, otherwise NULL.

EXAMPLES

The following code gets a pointer to the actual image datain a TMG image:

Thandl e hl mage;
IM U 8 *pl mageMenory; [*

“nmy” i mage nenory */

TMG Programmer’s Manual v4.0.4 TMG_image get ptr 119

hl mage = TMG_ i nage_create();

.. /* Read in an inmage fromdisk for exanple */

pl mageMenory = (I M. U 8*) TMG i mage_get _ptr(hl mage, TMG | MAGE_DATA) ;

/* W now have pl mageMenory pointing at the start of our inmage data, so we can
mani pul ate it directly */

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image set flags, TMG_image set ptr.

TMG Programmer’s Manual v4.0.4 TMG_image is_colour 120

TMG_image_is_colour

USAGE

Tboolean TMG_image is_colour(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns TRUE if theimageis colour and FALSE if it isgrayscale or bilevel (i.e. line art - 1 bit per pixel).
Note that this function will return FALSE if the image is paletted and the colourmap (or palette) consists only
of grayscales.

RETURNS
Returns TRUE or FALSE.

EXAMPLES

The following code fragment reads an image and determinesiif it is colour or not:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
if (TMG_image_i s_col our (hl mage) == TRUE)
printf(“We have a col our inmage”);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_cmap _is grayscale, TMG_image get_parameter.

TMG Programmer’s Manual v4.0.4 TMG_image malloc_a strip 121

TMG_image_malloc_a_strip

USAGE
Terr TMG_image malloc_a_strip(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function all ocates sufficient memory for one strip of the image currently being processed. The amount
of memory allocated is determined by two parameters internal to the image structure - bytes per_line and
lines this strip. If lines this strip is set the height of the image, then the image will be processed in one
strip. The function TMG_image_checkcal culates and fillsin bytes per_line from the pixel format and width
of the image.

The method used for memory allocation varies between the different operating systems. For example,
Solaris 2 uses memalign. The #defines MALLOC and FREE are used internally in the TMG library and are
defined inthefile “asl_gen.h” available with the SDK - please refer to thisfile for more details.
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES
See the “ Test Pattern Generation” example in the extended examples section in the “Sample Applications”
section.
BUGS/NOTES
Thisfunction israrely needed is a user application.

SEE ALSO
TMG_image free data, TMG_image set parameter, TMG_image set flags.

TMG Programmer’s Manual v4.0.4 TMG_image_move 122

TMG_image_move

USAGE
Terr TMG_image_move(Thandle Hin_image, Thandle Hout_image)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to the output image.

DESCRIPTION

This function copies the image parameters and moves the data (i.e. the pointer is copied) from Hin_image to
Hout_image. Theinternal data pointer in Hin_image is set to NULL.

If either the input or output image has locked memory, then this function will fail - aslocked memory cannot
be freed or moved. Generally the application should be written not to use this function with locked memory
(in fact not to use this function at all if possible - but sometimesit is useful). Alternatively TMG_image _copy
can be used to copy from locked memory to locked/unlocked memory. However in speed critical applications
it wastes time to copy image data around and the application should be re-structured so as not to have to do
this.

Obviously this function is much faster than TMG_image_copy as the datais simply moved - in fact the time
taken to perform the move isinsignificant in an application, but the time taken to copy generally is significant.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

Thisexamplereadsin a TIFF filein strips, movesit and savesit. Notethat a “dummy” read is needed first to
determine the height of the image so that the number of strips can be calculated:

TMG i mage_set _infil enanme(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_copy.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMSG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG_ i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++)

{

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG i mage_nove(hl mage, hCut | mage) ;

TMG i mage_write(hQutl mage, TMG NULL, TMG Tl FF, TM5 RUN);
}

TMG i nage_set _paraneter (hl mage, TMG LINES TH S STRIP, 8); /* just in case */

Note that if the image height of “sky.tif” did not divide exactly by 8, the TMG_LINES THIS STRIP
parameter of himage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

TMG Programmer’s Manual v4.0.4 TMG_image_move 123

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image copy, TMG_image set flags.

TMG Programmer’s Manual v4.0.4 TMG_image read 124

TMG_image_read

USAGE
Terr TMG_image read(Thandle Hin_image, Thandle Hout_image, uil6 TMG_action)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to an optional output image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function reads an image from disk or memory. If reading from disk, the function is called with
Hout_image set to TMG_NULL. TMG_image read uses TMG_image find_file format internally to
determine the image file format. The supported file formats are TIFF, Windows Bitmap, Targa, Encapsul ated
PostScript and JPEG/JFIF. (Note that JPEG/JFIF files are only read in, TMG_JPEG_decompressis required
to decompress them.)

This function will read an image in strips or as one whole strip (i.e. the whole image). When reading the
whole image at once, the height of the image should be set to TMG_AUTO _HEIGHT. Whenreading in
strips, the internal image parameter lines _this strip is set asusual. (See example below.)

The purpose of reading image data from memory - i.e. from Hin_image to Hout_image, would be to read
strips of Hin_image at atime (say 8 lines per strip) to conserve memory for a chain of image processing
functions.

The concept of strips does not directly apply to reading JPEG data. Therefore if the input file is a JPEG file,
the complete image will always be read, unlessthe TMG_LINES THIS STRIP parameter set in the input
image (see TMG_image_set_parameter) is zero - in which case the JPEG file will be opened (using
TMG_JPEG file_open) and then closed after the image dimensions etc have been beread. Thiswill all
happen internally to TMG_image read.

When reading non-JPEG files, the only three possible pixel formatsin the resulting image are TMG_Y8 for
grayscale, TMG_RGB24 for colour and TMG_PALETTED for a paletted image. (Note that the paletted image
may actually be grayscale - see TMG_cmap_is grayscale and TMG_image convert.)

Internally TMG_image read calls the following file read functions:

TMG_read_from _memory(Thandle Hin_image, uil6 TMG_action)
TMG _read_TIFF_file(Thandle Hin_image, uil6 TMG_action)
TMG _read_EPS file(Thandle Hin_image, uil6 TMG_action)
TMG _read_TGA file(Thandle Hin_image, uilé TMG_action)
TMG_read_BMP_fileg(Thandle Hin_image, uil6 TMG_action)
TMG_JPEG file read(Thandle Hin_image)

It is recommended that the TMG_image read function is used, as it provides a simple common interface.
However applications linked with static libraries may prefer to use the individual function calls, to reduce the
size of the resulting executable.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

TMG Programmer’s Manual v4.0.4 TMG_image read 125

EXAMPLES

The following code fragment reads a TIFF file (the whole image in one go) and displaysit to a 16 bit colour
display:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG_ i mage_convert (hl mage, hDi spl mage, TMG RGB16, 0, TMG RUN);

TMG_di spl ay_i mage(hDi spl ay, hDi spl mage, TM5 RUN);

This next example readsin a TIFF file in strips and saves it asits mirror image. This strip processing
approach would be needed for very largeimages. Notethat a “dummy” read is needed first to determine the
height of the image so that the number of strips can be calcul ated:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_mirror.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG_ i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG_ i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG I P_mirror_i mage(hl mage, hQutl mage, TMG RUN);

TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}

Thisfinal example assumes the complete image isin memory in hFulllmage, and again it is necessary to write
the mirror image of the image to file. Because there may not be enough memory to hold the full mirrored
image, it is necessary to write it in strips:

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG_ i mage_set _outfil ename(hFul | I nage, “sky_mirror.tif”);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i nage_set _paraneter (hFul | I mage, TMG LINES TH S STRI P, 8);
Total Strips = TMG i nage_cal c_total _strips(hFulllmge);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_read(hFul I | mage, hStripl mage, TMG RUN);
TMG I P_mrror_i mage(hStripl mage, hOutlmage, TMG RUN);
TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);

}
Ful | Hei ght = TMG_ i nage_get _paranet er (hFul | | mage, TMG_HEI GHT) ;
TMG i mage_set _paraneter (hFul | I mage, TMG LINES THI S _STRI P, Ful | Hei ght);

BUGS/NOTES
Of the supported TIFF and BMP formats, only uncompressed image data is supported.
Only EPS files written using TMG_image write can be read. The TMG library does not have any PostScript
interpreting ability.

SEE ALSO

TMG_image_set_infilename,
TMG_image set_outfilename, TMG_image write, TMG_JPEG file read.

TMG Programmer’s Manual v4.0.4

TMG_image set flags 126

TMG_image_set_flags

USAGE

Terr TMG_image_set_flags(Thandle Himage, uil6 type, Thoolean state)

ARGUMENTS
Himage Handle to an image or TMG_ALL_HANDLESto select all images.
type Flag type.
state Either TRUE or FALSE.

DESCRIPTION

This function sets flagsin Himage which are then subsequently tested on by various TMG functions - in

particular TMG_image_convert.

The flags are asfollows:
TMG_LOCKED

TMG_IS JPEG
TMG_IS DIB

TMG_DIB_NON_INVERTED

TMG_USE_LUT

TMG_HALF_ASPECT

TMG_DATA_STREAM

This indicates that once the image memory (JPEG or raw) has been
alocated it will not be freed (or re-allocated) unlesstheimageis
destroyed.

Thisisaninternal flag used to indicate that the image contains JPEG data.

Thisindicates that theimageisaDIB. Thisisthe standard Windows DIB
structure stored in the image memory areain theimage. Itisalso used by
TMG_image_convert to indicate the output image should be aDIB.

Thisflag indicates that the DIB is not inverted. Intheorigina DIB
format, the image was inverted (vertically), but now increasingly DIBs
may contain the image the other (correct) way up.

Thisflag isused by TMG_image_convert to indicate that the colourspace
conversion from YUV 4:2:2 datato RGB data should usea LUT.

Thisflag indicates that the image has half the usual aspect ratio - in other
words if displayed normally the image will appear squashed verticaly.
Thisflag isusually used to indicate that the imageisasingle field of
video. Other routines, such as display routines, may examine thisflag to
determine how to display the image.

Thisflag indicates that the data in the image structure is not formatted in
the usual way with a fixed image width and height. For example it may
simply represent a continuous stream of data - not necessarily image data.
This can be useful when used in conjunction with the Snapper acquisition
libraries for acquiring non-standard data formats.

Himage can be TMG_ALL_HANDLESwhich is sets the flag as requested in all images. Thisis particularly
useful to unlock all image memory prior to destroying all images.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

TMG Programmer’s Manual v4.0.4 TMG_image set flags

127

EXAMPLES

The following code shows how to lock memory in an image and also how to unlock all images:

/* Lock nenmory to save re-allocation time */
TMG i mage_set _fl ags(hl mage, TMG LOCKED, TRUE);

/* Destroy all images */

TMG i mage_set _fl ags(TMG ALL_HANDLES, TMG LOCKED, FALSE);
TMG i mage_dest roy(TMG_ALL_HANDLES) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image get_flags, TMG_image convert, TMG_image set_parameter.

TMG Programmer’s Manual v4.0.4 TMG_image_set_infilename, 128
TMG_image_set_outfilename

TMG_image_set_infilename,
TMG_image_set_outfilename

USAGE
Terr TMG_image_set_infilename(Thandle Himage, char *filename)
Terr TMG_image_set_outfilename(Thandle Himage, char *filename)

ARGUMENTS

Himage Handle to an image.

filename Pointer to aNUL terminated ASCI| text string.
DESCRIPTION

These functions set the input/output file name of the image referenced by Himage. Thisinput file nameis
used by any file reading functions, such as TMG_image read, and the output file name is used by file writing
functions, such as TMG_image write.

The input file name and the output file name are stored in separate fields within the image structure and any
TMG processing function will propagate these parameters to “downstream” functions.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads, sub-samples, then writes a TIFF file (the whole image in one go):
TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);
TMG_ i mage_set _outfil enane(hl mage, “sky_x2.tif");
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG_| P_subsanpl e(hl mage, hQutlnmage, 2, TMG_RUN);
TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image get_infilename,
TMG_image get outfilename, TMG_image read.

TMG Programmer’s Manual v4.0.4 TMG_image_set_parameter 129

TMG_image_set_parameter

USAGE
Terr TMG_image_set _parameter(Thandle Himage, uil6 parameter, ui32 value)

ARGUMENTS
Himage Handle to an image.
parameter Parameter type.
value The actual value passed in as a 32 bit unsigned integer (although some parameters will only
be 16 bit unsigned integers).
DESCRIPTION

This function setsinternal parametersin the image structure referenced by Himage.
The parameters are as follows:

TMG_PIXEL_FORMAT This sets the pixel format of the image, Himage. Aswell as setting
the pixel format it will also automatically set the internal parameter
depth. Pixel formats are type uil6. For acomplete list of pixel
formats see the section “Pixel Formats and Return Types’ at the start
of thismanual. Thisoption israrely needed in a user application.

T™MG_WIDTH This parameter sets the width of an image. Thiswould not normally
be needed in a user application.

TMG_HEIGHT This parameter sets the height of animage. Thiswould usually be
used with value set to TMG_AUTO_HEIGHT for reading an image
into memory from file - see TMG_image _read.

TMG_DEPTH This parameter sets the depth of theimage. Depth refersto the
number of bits per pixels - for example, pixel format TMG_RGB16
would have a depth of 16. Thiswould not normally be needed in a
user application.

TMG_LINES THIS STRIP This sets the number of lines to read/process/write per iteration. |If
used, atypical value would be 8. See the section “Concepts’ at the
start of this manual.

TMG_BYTES PER LINE This represents the number bytes from pixel 1 online N to pixel 1 on
line N+1. Itisautomatically set by the function TMG_image check
(used internally) and is used as an “accelerator” for processing an
image.

TMG_FIELD ID Thisisused to indicate which field is present if the image contains
only asingle field of video data (see d'so the TMG_HALF_ASPECT
flag under TMG_image set_flags). Valid settings are
TMG_1ST_FIELD, TMG_2ND_FIELD, TMG_FRAME,
TMG_FIELD_1 OR 2, TMG_FRAME_FIELDS 12 or
TMG_FRAME_FIELDS 21.

TMG_NUM_BYTES DATA This represents the total number of bytes of image data. Itisonly
valid when used with the image flag TMG_DATA STREAM.

TMG_JPEG_NUM_BYTES DATA This represents the total number of bytes of JPEG data. Itisonly
valid when the image contains JPEG data. When multiple JPEG
images are contained within one image handle, this represents the
total amount of data, including the restart markers between frames.

TMG Programmer’s Manual v4.0.4

TMG_image_set_parameter 130

TMG_DATA WIDTH

TMG_NUM_FRAMES

TMG_CURRENT_FRAME

TMG_CMAP_SIZE

TMG_NUM_PLANES

RETURNS

This represents the actual number of valid bits of grayscale data. For
example, 12 bit grayscale data (acquired from say a 12 bit digital
camera) would be stored in an image with pixel format TMG_Y16.
The data width would be set to 12 to inform TM G functions that
image data is represented by the least significant 12 bits of each 16
bit word.

This represents the number of frames of image data or JPEG image
data contained in Himage. It ismainly used by the motion JPEG
functions for sequence acquisition and replay.

Thisindicates the frame that the current data pointer is pointing to in
a segquence of frames contained in Himage. It is mainly used by the
motion JPEG functions for sequence acquisition and replay.

Thisis used to set the colourmap (or palette) size. By default the
colourmap size 256 - that is 256 colour entries - each defined by 24
bits of RGB. See the colourmap examplesin the “Sample
Applications’ section at the start of this manual.

Thisindicates the number of planes of dataintheimage. Thisis
calculated as follows:

TMG_RGBS8, TMG_RGB15, TMG_RGB16 and TMG_YUV422 are
return avalue of 3; TMG_Y16 returns avalue of 1; all other formats
return the image depth divided by 8.

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code fragment reads, sub-samples, then writesa TIFF file. It performs each step on the whole
image as determined by setting TMG_HEIGHT to the specia parameter TMG_AUTO_HEIGHT:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5 _AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage,
TMG_| P_subsanpl e(hl nmage,
TMG i mage_wri t e(hQut | mage,

TMG_NULL, TMG RUN);
hQut | mage, 2, TMG RUN);
TMG_NULL, TMG TIFF, TMG RUN);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_image get_parameter, TMG_image set flags.

TMG Programmer’s Manual v4.0.4 TMG_image_set_ptr 131

TMG_image_set_ptr

USAGE
Terr TMG_image_set_ptr(Thandle Himage, uil6 type, void *ptr)

ARGUMENTS
Himage Handle to an image.
type The pointer type (seelist below).
ptr The pointer itself.
DESCRIPTION

This function setsinternal pointersin the structure referenced by Himage. It is most commonly used when
the application program wishes to allocate memory (for JPEG or raw image data) instead of letting the TMG
library do it. For example, the application program may want to force the TMG library to use a particular
area or type of memory (perhaps shared with another program in adriver application).

The possible pointer types are as follows:
TMG_IMAGE_DATA Sets the raw image data pointer.
TMG_JPEG_DATA Sets the JPEG compressed data pointer.

TMG_JPEG_USER COMMENT Writes a character buffer of length
TMG_JPEG_USER COMMENT _LEN (see—“tmg_api.h" for actual
length) into the JPEG comment tag of the JFIF stream. This could be
used for tagging images with timestamp information.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code allocates memory for image data and then destroys it in exit:

Thandl e hl mage;
IM U 8 *pl mageMenory; [* “ny

i mage nenory */

hl mage = TMG_ i nage_create();

pl mageMenory = mal | oc(100000) ;

TMG i mage_set _ptr (hl mage, TMG | MAGE_DATA, pl nageMenory);
TMG i mage_set _fl ags(hl nage, TMG LOCKED, TRUE);

/* W now have hl mage using our nenory that the TMG library will not touch */

/* To destroy it we nust free it and set the pointer to NULL */
free(pl mageMenory) ;

TMG i mage_set _ptr (hl mage, TMG | MAGE_DATA, NULL);

TMG_ i nage_dest roy(hl mage) ;

TMG Programmer’s Manual v4.0.4 TMG_image_set_ptr 132

The following “tags’ a JPEG image with the current time which may be subsequently extracted and used
using TMG_image get_ptr.

/* 32 chars avail able for JPEG "user coment" (see tng_api.h) */
char gszUser Comment [TMG_JPEG _USER _COMVENT_LEN] ;

sprintf(gszUserComrent, "t=9%8x r=%3d", gdwTi neStanpSecs, gnRotation);
TMG i mage_set _ptr(hJpegl mage, TMG JPEG USER COMVENT, (void*) gszUser Comment);
/* Actually copies data into structure — not just the pointer */

/* This timestanp nay be subsequently retrieved after saving or transmitting
the JPEG file */

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image set flags, TMG_image get_ptr.

TMG Programmer’s Manual v4.0.4 TMG_image write 133

TMG_image_write

USAGE
Terr TMG_image write(Thandle Hin_image, Thandle Hout_image, uil6 format, uil6 TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to an optional output image.
format The desired file format - one of: TMG_MEMORY, TMG_TIFF, TMG_TARGA,

TMG_JPEG, TMG_EPS, TMG_BMP, TMG_RAW.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function writes an image to disk or memory. If writing to disk, the function is called with Hout_image
set to TMG_NULL and format set to the required file format.

Thisfunction is essentially the inverse of TMG_image _read.

The TMG_RAW format listed above is simply a binary dump of the image data as a byte stream. 16 bit image
datais alwayswritten in Intel order - that is least significant byte first).

The concept of strips does not directly apply to writing JPEG datato file (but more so than to reading JPEG
data). In the situation of writing JPEG datain “strips’, each strip of processed image will produce a certain
amount of JPEG data. The number of bytes of JPEG data generated each strip by the compression function
(e.9. TMG_JPEG_compress) will be stored internally in the image structure. Thiswill be used by the writing
function to know how many bytes of JPEG data to write each strip. The JPEG end of data marker will
automatically be added at the end of the last strip. See TMG_JPEG_compress for an example. Wheniitis
necessary to write “strips’ of JPEG data to memory use the function TMG_JPEG_build_image.

Internally this function calls the following file read functions:

TMG_write to_memory(Thandle Hin_image, Thandle Hout_image, ui1l6 TMG_action)
TMG_write TIFF_file(Thandle Hin_image, uil6 TMG_action)
TMG_write EPS file(Thandle Hin_image, uil6 TMG_action)
TMG_write TGA file(Thandle Hin_image, uil6 TMG_action)

TMG_write BMP_file(Thandle Hin_image, ui1l6 TMG_action)
TMG_write RAW data file(Thandle Hin_image, uil6 TMG_action)

TMG_JPEG file write(Thandle Hin_image)

It is recommended that the TMG_image write function is used, asit provides a simple common interface.

However applications linked with static libraries may prefer to use the individual function calls, to reduce the
size of the resulting executable.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment reads, sub-samples, then writes a TIFF file (the whole image in one go):

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG Programmer’s Manual v4.0.4 TMG_image write 134

TMG_ | P_subsanpl e(hl mage, hQut | mage, 2, TMG RUN);
TMG i mage_write(hQutl mage, TMG NULL, TM5 TIFF, TMG RUN);

This next example reads a TIFF file in strips and savesit asits mirror image. This strip processing approach
would be needed for very large images. Notethat a “dummy” read is needed first to determine the height of
the image so that the number of strips can be cal cul ated:

TMG i mage_set _infil enanme(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_mirror.tif”);

/* open the file to read the inmge height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG I P_mirror_i mage(hl mage, hQutl nmage, TMG RUN);

TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}

Thisfinal example assumes that a complete image is required in memory in hFulllmage, after reading and
mirroring the image in strips to conserve memory:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMS RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i nage_set _paraneter (hFul | I mage, TMG LINES TH S STRI P, 8);
Total Strips = TMG i nage_cal c_total _strips(hFulllmge);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_read(hStri pl mage, TMG NULL, TMG RUN);
TMG I P_mrror_i mage(hStripl mage, hOutlmage, TMG RUN);
TMG i mage_write(hCutl mage, hFulll mage, TMs MEMORY, TMG RUN);

BUGS/NOTES
Of the TIFF and BMP formats, only uncompressed image data is supported.
The supported pixel formats are:

TIFF. TMG_RGB24, TMG Y8, TMG Y16, TMG_PALETTED.
EPS. TMG RGB24, TMG Y8, TMG PALETTED.

TGA: TMG_RGB24, TMG_RGB15, TMG_Y8.

BMP: TMG RGB24, TMG Y8, TMG_PALETTED.

RAW: All formats.

SEE ALSO

TMG_image read, TMG_image get_infilename,
TMG_image get_outfilename, TMG_JPEG file write.

TMG Programmer’'sManual v4.0.4 TMG_IP_crop 135

TMG_IP_crop

USAGE
Terr TMG_IP_crop(Thandle Hin_image, Thandle Hout_image, i16 *roi, ui16 TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
roi “ROI" array with four elements, with #defined element names:

TMG_ROI_X START Horizontal start position 0..(N-1).
TMG_ROI_Y_START Vertical start position 0..(N-1).
TMG_ROI_X LENGTH Horizontal width of box.
TMG_ROI_Y LENGTH Vertical height of box.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function takes the input image, Hin_image, and cropsit to the dimensions of theroi, to generate the
output image Hout_image.

When processing in strips, it may well be that one or more of the output strips contains no image data (i.e.
they are part of the cropped region). Any downstream TMG function cope with this.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
The following code fragment reads a TIFF file and cropsit to be a multiple of 8 in both dimensions:
i 16 Roi [TMG_SIZE_2D RO];

0;
0;

Roi [TMG_ROl _X_START]
Roi [TMG_ROl _Y_START]

TMG i mage_set _i nfil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_crop.tif”);

TMG_ i nage_set _par anmet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

Roi [TMG_RO _X LENGTH] = (i 16) (TMS_i mage_get par anet er (hl mage,
TMG_W DTH) / 8) *8;

Roi [TMG_RO _Y_LENGTH] = (i 16) (TMS_i mage_get par anet er (hl mage,
TMG_HEI GHT))/ 8) *8;

TMG | P_crop(hl mage, hQutl mage, Roi, TM5 RUN);

TMG i mage_write(hQutl mage, TMG NULL, TM5 TIFF, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_IP_pixel_rep, TMG_IP_subsample, TMG_IP_extract_region, TMG_IP_image insert.

TMG Programmer’s Manual v4.0.4 TMG_IP_extract_region 136

TMG_IP_extract_region

USAGE

Terr TMG_IP_extract_region(Thandle Hin_image, Thandle Hout_image, ui32 dwRegionType, ui32 dwX,
ui32 dwy, ui32 dwRadius, uilé TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
dwRegionType Type of region to extract. (Currently only support acircle - type 0.)
dwX Origin of region centre (x).
dwy Origin of region centre (y).
dwRadius Radius of circle.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, extracts aregion from it and places the output image data
into Hout_image.

The coordinate system has the origin at the top left of theimage. The output “image”’ has its width set to 1
and its width set to the number of pixels extracted.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file and extracts acircular region of datain preparation for some
image processing:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;

TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

/* Extract a circular region fromthe inmage, 0 = region type circle */

TMG | P_extract _regi on(hl nmage, hlmageData, 0, dwTargetOigi nX, dwTargetOiginY,

dwTar get Radi us, TMG RUN) ;
...1* Image data processing as required */

BUGS/NOTES

The only supported regionisacircle.

SEE ALSO
TMG_IP_crop.

TMG Programmer’s Manual v4.0.4 TMG_IP filter_3x3 137

TMG_IP_filter_3x3

USAGE
Terr TMG_IP_filter_3x3(Thandle Hin_image, Thandle Hout_image, i16 *array, uil6 TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
array 3 x 3 filter mask coefficients.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function performs afiltering operation on the image, Hin_image, to produce an output image,
Hout_image. Thefilter isa 3 x 3 mask function of the following form:

clc2c3
c4 c5c6
c7c8c9, wherearray pointsto thefirst element cl.

Output pixels are generated by multiplying each coefficient by the pixel in the same orthogonal position as the
coefficient, and then dividing by the sum of the coefficients. Typical applications include smoothing or
sharpening an image. Example coefficients are as follows:

111
111 Smoothing functioning.
111
-1-1-1
-1 121 Strong edge sharpening.
-1-1-1
-1-1-1
-1 20 -1 Medium edge sharpening.
-1-1-1
RETURNS
AS__OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .
EXAMPLES
The following code fragment shows how to edge enhance an image:
i16 Array[9];
;Array[O] =-1; Array[1] = -1; Array[2] = -1;
Array[3] = -1; Array[4] = 20; Array[5] = -1;
Array[6] = -1; Array[7] = -1; Array[8] = -1;

TMG I P_filter_3x3(hlnlmge, hCutlnmage, Array. TMG RUN);

BUGS/NOTES
This function only works on grayscale and 24 bit RGB images. (i.e. TMG_Y8 and TMG_RGB24).

TMG Programmer’s Manual v4.0.4 TMG_IP filter_3x3 138

SEE ALSO

TMG Programmer’s Manual v4.0.4 TMG_IP_generate averages 139

TMG_IP_generate_averages

USAGE
Terr TMG_IP_generate averages(Thandle Hin_image, struct tTMG_Averages * psAverages, Ui1l6
TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
psAverages Pointer to a TMG “Averages’ structure (see source include file “tmg.h” for full details).
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function takes the input image, Hin_image, and calcul ates the average value for each plane in the image.
Theresults are put into the TMG Averages structure pointed to by psAverages. The structure is defined in the
sourceinclude file “tmg.h”.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to calculate the average hue, saturation and intensity levelsin an
image.
struct tTMG Averages sAverages;

TMG_ i mage_convert (hYuvl nage, hHsilnmage, TMG HSI, 0, TMG RUN);
TMG_ | P_gener at e_aver ages(hHsi | nage, &sAverages, TMG RUN);
printf(“Average hue %\ n”, (int) sAverages.dwPl anel);
printf(“Average sat %\ n”, (int) sAverages.dwPl ane2);
printf(“Average int %\ n”, (int) sAverages.dwPl ane3);

BUGS/NOTES
Thereisonly support for TMG image type TMG_HSl.

SEE ALSO
TMG_IP_histogram_generate.

TMG Programmer’s Manual v4.0.4 TMG_IP_histogram_clear 140

TMG_IP_histogram_clear

USAGE
Terr TMG_IP_histogram _clear(struct tTMG_Histogram * psHistogram)

ARGUMENTS

psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).

DESCRIPTION

This function takes the histogram structure, psHistogram, and clears down all structure elementsto 0.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment clears down the histogram structure, psHistogram:
struct tTMG Hi stogram *psHi st ogram

TMG_| P_hi st ogram cl ear (psHi st ogram ;

BUGS/NOTES

SEE ALSO
TMG_IP_histogram generate, TMG_IP_histogram_match, TMG_IP_histogram filter.

TMG Programmer’s Manual v4.0.4 TMG_IP_histogram _filter 141

TMG_IP_histogram_filter

USAGE
Terr TMG_IP_histogram filter(struct tTMG_Histogram * psHistogram, i32 nFilterOrder)

ARGUMENTS
psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).
nkFilterOrder Filter type. eg. TMG_LP_FILTER ORDER 0.

DESCRIPTION

This function takes the histogram structure, psHistogram, and filters the histogram(s) using the filter specified
by nFilter Type.

TMG_LP_FILTER _ORDER 0isthe only supported option for nFilterOrder. This applies the following
digital filter algorithm:

Y(n) = (X(n+1) + 2.X(n) + X(n-1)) / 4.
In order to apply higher order filters, simply call the function repeatedly as required.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment generates an HSI image, then generates and filters the histogram for each plane:
TMG i mage_convert (hYuvl mage, hHsilmage, TM5 HSI, 0, TMG RUN);

TMG_| P_hi st ogr am gener at e(hHsi | mage, psH stogram TMG RUN);
TMG | P_histogram filter(psH stogram TMG FILTER ORDER 0);
BUGS/NOTES
Thereisonly support for TMG image type TMG_HS.
TMG_LP_FILTER_ORDER 0isthe only supported option for nFilterOrder.

SEE ALSO
TMG_IP_histogram generate, TMG_IP_histogram_match, TMG_IP_histogram clear.

TMG Programmer’s Manual v4.0.4 TMG_IP_histogram_generate 142

TMG_IP_histogram_generate

USAGE
Terr TMG_IP_histogram_generate(Thandle Hin_image, struct tTMG_Histogram * psHistogram, uil6
TMG_action)

ARGUMENTS
Hin_image Handle to the input image.

psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function takes the input image, Hin_image, and generates a histogram for each planein theimage. The
results are put into the TMG Histogram structure pointed to by psHistogram. The structure is defined in the
sourceinclude file “tmg.h”.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment generates an HSI image and then generates a histogram for each plane:
struct tTMG Hi stogram *psHi st ogram

'.I'.ll\/G_i mage_convert (hYuvl mage, hHsilnmage, TMG HSI, 0, TMG_RUN);
TMG_| P_hi st ogr am gener at e(hHsi | mage, psHi stogram TMG RUN);
BUGS/NOTES
Thereisonly support for TMG image type TMG_HS.

SEE ALSO

TMG_IP_histogram filter, TMG_IP_histogram match, TMG_IP_histogram clear,
TMG_IP_generate_averages.

TMG Programmer’s Manual v4.0.4 TMG_IP_histogram_match 143

TMG_IP_histogram_match

USAGE
Terr TMG_IP_histogram_match(struct tTMG_Histogram * psRefHistogram, struct tTMG_Histogram
*pslnHistogram, i32 nPlane, ui32 * pdwResult)

ARGUMENTS

psRefHistogram Pointer to the reference TMG “Histogram” structure.
pslnHistogram Pointer to the input TMG “Histogram” structure.

nPlane References plane 1, 2 or 3, representing HSI, RGB or YUV 4:2:2 planes.
pdwResult Pointer to 32 bit unsigned integer which isfilled in by the function with the result.
DESCRIPTION

This function takes the input histogram structure, psinHistogram, and compares it to the reference histogram,
psRefHistogram, and gives a percentage match in pdwResult. Only one histogram plane, selected by nPlane,
iscompared at atime.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
The following code fragment generates an HSI image, then performs a histogram match of the hue
component:

TMG i mage_convert (hYuvl mage, hHsilmage, TM5 HSI, 0, TMG RUN);

TMG_| P_hi st ogr am gener at e(hHsi | mage, psHi stogram TMG RUN);

/* Hue match - plane 1 (selects HS/1) */

TMG_| P_hi st ogram mat ch(psRef H st ogram psHi stogram 1, pnHueMatch);
printf(“Spectrum match = %\ n”, *pnHueMatch);

BUGS/NOTES

SEE ALSO
TMG_IP_histogram generate, TMG_IP_histogram filter, TMG_IP_histogram clear.

TMG Programmer’s Manual v4.0.4 TMG_IP_image insert 144

TMG_IP_image_insert

USAGE
Terr TMG_IP_image_insert(Thandle hinlmage, Thandle hinsertimage, ui32 dwX, ui32 dwy)

ARGUMENTS
hinlmage Handle to the main image.
hlnsertimage Handle to the image to be inserted.
dwxX Pixel number (1..N) in main image of top left point of image to be inserted.
dwy Line number (1..N) in main image of top left point of image to be inserted.
DESCRIPTION

This function takes the insert image, hlnsertimage, and copiesit into the main image hinlmage starting at the
point (dwX, dwY). The insert image should be the same pixel format as the main image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual. The function returns an error if the insert image does not fit wholly within the main image.

EXAMPLES

The following code inserts a cropped image hCroplmage into alarger image himage at line 10, pixel 10:
TMG | P_i mage_i nsert (hl mage, hCropl nage, 10, 10);

BUGS/NOTES

There are no known bugs.

SEE AL SO
TMG_IP_crop.

TMG Programmer’'sManual v4.0.4 TMG_IP_mirror 145

TMG_IP_mirror

USAGE
Terr TMG_IP_mirror(Thandle hinlmage, Thandle hOutimage, i16 *roi, uil6é TMG_action)

ARGUMENTS
hinlmage Handle to the input image.
hOutlmage Handle to the output image.
roi Region of Interest array (see TMG_IP_crop for description).
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, hinlmage, copiesit to the output image hOutlmage, then extracts the
selected region of interest from the input image, mirrors this region (lateral inversion), and then inserts the
mirrored region into the output image hOutl mage.

This function can be used to correct the image from atwo tap digital camera where one tap reads out in
reverse order.

Note that the horizontal and vertical start positions of the region of interest (roi) range from 0 .. N-1, where N
isthe width or height of the input image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment reads a TIFF file, mirrors the right hand half of it and writesit to anew file:

TMG i mage_set _infil enane (hlmagel, “sky.tif”);

TMG i mage_set _outfil enane(hl magel, “sky_rh_mirrored.tif”);

TMG i mage_set _par anet er (hl magel, TMG HElI GHT, TMG_AUTO_HEI GHT) ;

TMG i mage_set _paranet er (hl nagel, TMSG LINES THI S STRI P, 0);

TMG i mage_r ead(hl magel, TMG NULL, TMG RUN))

Roi [TMG_RO _X START] (i16) (TMG_i mage_get _par anet er (hl magel, TMG WDTH) / 2);
Roi [TMG_RO _Y_START] 0;

Roi [TMG_RO _X_ LENGTH] (i16) (TMG_i mage_get _par anet er (hl magel, TMG WDTH) / 2);
Roi [TMG_RO _Y_LENGTH] (i16) (TMG_i mage_get _par anet er (hl magel, TMG HEI GHT));
TMG I P_mirror(hl magel, hlmage2, Roi, TMG RUN);

TMG i mage_write(hl mage2, TMG NULL, TMG TIFF, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_IP_mirror_image.

TMG Programmer’'sManual v4.0.4 TMG_IP_mirror_image 146

TMG_IP_mirror_image

USAGE
Terr TMG_IP_mirror_image(Thandle Hin_image, Thandle Hout_image, ui16 TMG_action)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to the output image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function takes the input image, Hin_image, and mirrorsit (lateral inversion), to generate the output
image Hout_image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, mirrorsit and writes it back:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _outfil enanme(hlmage, “sky_mrrored.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG I P_mirror_i mage(hl mage, hQutl mage, TMG RUN);

TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_IP_mirror.

TMG Programmer’'sManua v4.0.4 TMG_IP_pixel_rep 147

TMG_IP_pixel_rep

USAGE
Terr TMG_IP_pixel_rep(Thandle Hin_image, Thandle Hout_image, uil6 rep_factor, uil6 TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
rep_factor The pixel replication factor.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, and replicates the each pixel using the simpleinteger scaling
factor, rep_factor, to generate the output image Hout_image.

This function can be used to “zoom” an image for display purpose as long as there is sufficient memory.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment reads a TIFF file, expands it by two and writes it back:

TMG i mage_set _i nfil enanme(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5 _AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG | P_pi xel _rep(hl mage, hQutlnmage, 2, TMG RUN);

TMG i mage_write(hQutl mage, TMG NULL, TMS TIFF, TMG RUN);

BUGS/NOTES
This function only supports simple binary scaling, that isrep_factor must be 1, 2, 4, 8 etc.

SEE ALSO
TMG_IP_subsample.

TMG Programmer’s Manual v4.0.4 TMG_IP_rotate image 148

TMG_IP_rotate_image

USAGE
Terr TMG_IP_rotate image(Thandle Hin_image, Thandle Hout_image, ui32 dwDegrees)

ARGUMENTS

Hin_image Handle to the input image.
Hout_image Handle to the output image.
dwDegrees Degrees by which to rotate the image. Must be one of 0, 90, 180 or 270.

DESCRIPTION

This function takes the input image, Hin_image, and rotates it by the angle dwDegrees. Thisfunction
reguires the whole image to be present in Hin_image (i.e. it cannot operate in strips).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, rotates it and writes it back out asa TIFF file.

TMG_ i mage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _outfil enane(hl mage, “sky_r90.tif");

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG | P_rotate_i mage(hl nrage, hQut | nmage, 90);

TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG Programmer’s Manual v4.0.4 TMG_IP_subsample 149

TMG_IP_subsample

USAGE
Terr TMG_IP_subsample(Thandle Hin_image, Thandle Hout_image, uil6 sub_factor, uilé TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
sub_factor The sub-sample factor.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, and sub-samplesit using a simple integer scaling factor,
sub_factor, to generate the output image Hout_image.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment reads a TIFF file, sub-samplesit by two and writes it back:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5 _AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG_ | P_subsanpl e(hl mage, hQut | nmage, 2, TMG RUN);

TMG i mage_write(hQutlmage, TMG NULL, TMS TIFF, TMG RUN);

BUGS/NOTES

This function only supports simple binary sub-sampling, that is sub_factor must be 1, 2, 4, 8 etc. Also the
input image must be exactly divisible by the sub-sampling factor.

SEE ALSO
TMG_IP_pixel_rep, TMG_IP_crop.

TMG Programmer’s Manual v4.0.4 TMG_IP_threshold _grayscale 150

TMG_IP_threshold_grayscale

USAGE

Terr TMG_IP_threshold_grayscale(Thandle Hin_image, Thandle Hout_image, ui8 white level, ui8
black level, uil6 TMG_action)

ARGUMENTS

Hin_image Handle to an input image.
Hout_image Handle to an output image.
white level White level threshold.
black level Black level threshold.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This processing function accepts a grayscale image (of type TMG_Y8) and performs a white level and black
level threshold operation onit. All pixelsin the image with avalue greater than or equal to white_level are
set to white (value 255), and all pixels with values less than black level are set to black (value 0). The output
image isagrayscale image. This function can be useful for mapping background gray levels to white or black
and could be regarded as a simpl e type of luma keying.

For asingle threshold, resulting in an output image with only black (0) or white (255) pixels, white level and
black level would be set equal to one and other.

Applications include pre-processing an image prior to JPEG compression (to improve the compression ratio),
or prior to printing to obtain a better |ooking image.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, thresholds it and writes it back:
TMG_ i nage_set _infil enane(hl mage, “car.tif”);
TMG_ i nage_set _outfil enane(hlmage, “car_out.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
/* Al gray levels |less than 20 will becone 0 and all */
/* white levels greater than 200 will becone 255. */
TMG_ | P_t hreshol d_grayscal e(hl rage, hQutl nmage, 20, 200, TMG RUN);
TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS/NOTES
This function only works for grayscale images.

There are no known bugs.

SEE ALSO

TMG Programmer’'sManua v4.0.4 TMG_JPEG buffer_read 151

TMG_JPEG_buffer_read

USAGE
Terr TMG_JPEG_bhuffer_read(Thandle Hjpeg_image, ui8 *pbData, ui32 dwBytesData)

ARGUMENTS

Hjpeg_image A handleto a JPEG image.
pbData Pointer to the buffer containing datain JPEG interchange format.
dwBytesData The amount of datain the buffer.

DESCRIPTION

Thisfunction reads a full JPEG image from the buffer, pbData, into Hjpeg_imagein one go (i.e. not in
strips). The internal image parameter lines_this strip is set to height to indicate that the whole image is
present (as compressed JPEG data). The amount of memory allocated for the compressed dataitself is set to
dwBytesData (thisis a convenient number to use, although typically around 700 bytes more than is necessary.
Using this number, to allocate memory, saves a memory to memory copy that would be required if memory
usage was to be optimised.)

Thisfunction is useful when sending JPEG “files’ over network links — see the example below.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how the function could be used to receive a JPEG image over a network:

/* Read the data froma renote machi ne using “SCA Recv” (comms read fn) */
dwSt at us = SCA Recv(hConnection, &JIwConmand, &pbData, &dwSize, 5000);
if ((dwStatus == 0) && (pbData !'= NULL)) /* Received data OK? */

{
TMG_JPEG buf fer _read(hJPEQ nage, pbData, dwSize);
/* Deconpress to RGB (as opposed to YUv422) */
TMG_ i mage_set _par anet er (hSrcl mage, TMG Pl XEL_FORMAT, TMG RGB24);
/* |f grayscale this will automatically change to Y8 in the deconpress

function. */

TMG_JPEG deconpr ess(hJPEGQ nage, hSrcl mage, TMG RUN);
/* Convert to DIB */
TMG_ i mage_convert (hSrcl mage, hDl Bl mage, TMG BGR24, TMG IS DIB, TMG_RUN);
TMG_di spl ay_i mage(hDi spl ay, hDI Bl mage, TMG_RUN);

}

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG buffer_write, TMG_JPEG file read.

TMG Programmer’'sManual v4.0.4 TMG_JPEG buffer_write 152

TMG_JPEG_buffer_write

USAGE
Terr TMG_JPEG_buffer_write(Thandle Hjpeg_image, ui8 *pbData, ui32 *pdwCount, uilé TMG_action)

ARGUMENTS
Hjpeg_image A handleto a JPEG image.
pbData Pointer to target buffer (user allocated).
pdwCount Pointer to a 32 bit unsigned word, filled in by the function, indicating the total amount of
data written.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function writes the JPEG image, Hjpeg_image, to a buffer in JPEG/JFIF “file” format. 1t may be called
as part of a strip processing loop, in which case it will automatically write the amount of compressed data
produced so far by the compression process. In thisinstance, the internal image parameter lines this_strip,
would be used as an indicator of when the last strip of compressed data is written so that an EOI (End of
Image) marker can be appended to the end of the data stream.

If the whole compressed image is written as one strip, lines _this_strip should be set to the image height, in
which case the EOl marker will again be automatically appended. Alternatively, if TMG_JPEG_buffer_write
iscalled with TMG_RESET, the EOl marker isimmediately written to the file.

Thisfunction is useful when sending JPEG images over network connections.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how the function could be used to send a JPEG image over a network:

TMG_JPEG conpress(hl mage, hJpegl mage, TMG RUN);

TMG _JPEG buffer_write(hJpegl mage, pbData, &dJIwSize, TMG RUN);
SCA_Send(hConnection, CC _NET_| MAGE, pbData, dwSize, TIMEQUT_5SECS);
/* “SCA_Send” is an exanple network send command */

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG buffer_read, TMG_JPEG file write.

TMG Programmer’'sManual v4.0.4 TMG_JPEG_build_image 153

TMG_JPEG_build_image

USAGE
Terr TMG_JPEG_build_image(Thandle Hin_image, Thandle Hout_image, ui1l6 TMG_action)

ARGUMENTS

Hin_image Handle to the input JPEG image.
Hout_image Handle to the output JPEG image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

Thisfunction is designed to be used as the last function in a strip processing loop to build a full JPEG image
in memory. For example the source raw image may be compressed 8 lines at atime and be 64 lineshigh - in
this case TMG_JPEG_build_image would be called 8 times (in the strip processing loop) and the resulting
complete JPEG image contained in Hout_image.

This function will also optimise the memory usage of the JPEG image using one of the features of the
function TMG_JPEG_sequence_build.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment JPEG compresses the image Hin_image, which containsisafull imagein
memory (and hasitsinternal parameter lines _this strip set to 8).
TMG_ i nage_set _paraneter(H n_i mage, TMG LINES TH S STRIP, 8);
total _strips = (ui16) TMG.image_cal c_total _strips(Hi n_i nage);
for (strip = 0; strip < total _strips; strip += 1) {
TMG_ i mage_read(H n_i nage, Hstripped_i nage, TMG RUN);
TMG_JPEG conpress(Hstripped_i nage, H enp_i nage, TMG RUN);
TMG_JPEG bui l d_i mage(Ht enp_i mage, H peg_i mage, TMG RUN);
}

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG file write, TMG_JPEG file open, TMG_JPEG file read, TMG_JPEG_sequence build.

TMG Programmer’'sManual v4.0.4 TMG_JPEG_compress 154

TMG_JPEG_compress

USAGE
Terr TMG_JPEG_compress(Thandle Himage, Thandle Hjpeg_image, uil6 TMG_action)

ARGUMENTS

Himage Handle to araw (uncompressed) image.

Hjpeg_image Handleto a JPEG image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.
DESCRIPTION

This function compresses an image (or strip) using the JPEG baseline compression algorithm. When the
function is called with TMG_action set to TMG_RUN, raw image datais read from Himage, and compressed
JPEG data written to Hjpeg_image. The strip size is determined by the lines_this_strip parameter of Himage
(set using TMG_image _set_parameter). If the functionis called with TMG_action set to TMG_RESET the
compression process is aborted and local static (internal) variables arereset. TMG_RESET israrely needed.

Its recommended that images are compressed a strip at atime (set lines _this_strip to 8), because this function
uses several intermediary imagesinternally.

Thisfunctioniscaled by TMG_JPEG_compress image to_image.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is dightly faster if the image to be compressed has a width which is exactly divisible by 16 for
colour images and 8 for grayscale images, and a height that is exactly divisible by 8.

The JPEG images are generated using the “ default” Huffman tables as suggested in the JPEG specification.

SEE ALSO
TMG_JPEG_decompress, TMG_JPEG_compress image to_image, TMG_JPEG_set Quality factor.

TMG Programmer’'sManua v4.0.4 TMG_JPEG_compress image to_image 155

TMG_JPEG_compress_image_to_image

USAGE

Terr TMG_JPEG_compress image to_image(Thandle Himage, Thandle Hjpeg_image, uil6 in_format,
uil6 out_format)

ARGUMENTS
Himage Handle to raw image.
Hjpeg_image Handleto JPEG image.
in_format TMG_MEMORY or TMG_FILE.

out_format TMG_MEMORY or TMG_FILE.

DESCRIPTION

Thisisaconvenient wrapper function for TMG_JPEG_compress that compresses a complete image using the
JPEG baseline compression algorithm. Raw image datais read from Himage, compressed and written to
Hjpeg_image. If theinput format, in_format, is set to TMG_MEMORY, raw image data is read from memory
(from Himage). If in_format isset to TMG_FILE, it isread from the file associated with Himage (i.e. set
using TMG_image_set_infilename). Similarly, if the output format, out_format, is set to TMG_MEMORY,
compressed datais written to memory (in Hjpeg_image). If out_format is set to TMG_FILE it iswritten
directly to the JPEG file referenced by Hjpeg_image (i.e. set using TMG_image _set_outfilename). If the
lines this_strip parameter of Himage is less than the total image height, then compression is performed in
strips. Thelines_this strip parameter is set using TMG_image set_parameter.

Its recommended that images are compressed a strip at atime (set lines _this_strip to 8), because this function
uses several intermediary imagesinternally.

This function is a convenient way of compressing from file to file with just one call.

The output memory used by Hjpeg_image is optimised to its exact requirements.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
See the extended examplesin the “ Sample Applications’ section.

BUGS/NOTES

Thisfunction is dightly faster if the image to be compressed has a width which is exactly divisible by 16 for
colour images and 8 for grayscale images, and a height that is exactly divisible by 8.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

SEE ALSO
TMG_JPEG_decompress image to image, TMG_JPEG_compress, TMG_JPEG_set Quality factor.

TMG Programmer’'sManua v4.0.4 TMG_JPEG_decompress 156

TMG_JPEG_decompress

USAGE
Terr TMG_JPEG_decompress(Thandle Hjpeg_image, Thandle Himage, ui1l6 TMG_action)

ARGUMENTS

Hjpeg_image Handleto compressed JPEG image.

Himage Handle to raw (uncompressed) image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.
DESCRIPTION

This function decompresses a single image strip using the JPEG baseline decompression algorithm. I the
function is called with TMG_action set to TMG_RUN, compressed image datais read from Hjpeg_image, and
raw data written to Himage. The strip size is determined by the lines_this_strip parameter of Hjpeg_image.

If the function is called with TMG_action set to TMG_RESET, the decompression is aborted and internal
static variables are reset.

For colour images, the JPEG image may be decompressed to YUV 4:2:2 data or RGB data depending on the
pixel format set in Himage (see TMG_image_set_parameter with TMG_PIXEL_FORMAT). By default the
decompressed image will have the pixel format TMG_RGB24, but if the pixel format is set to TMG_YUV422
prior to calling this function, the pixel format of the decompressed image will be TMG_YUV422.

Its recommended that images are compressed a strip at atime (set lines_this_strip to 8 using
TMG_image set parameter), because this function uses several intermediary images internally.

Thisfunction iscalled by TMG_JPEG_decompress image to_image.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES
Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

SEE ALSO
TMG_JPEG_compress, TMG_JPEG_decompress image to_image.

TMG Programmer’'s Manual v4.0.4 TMG_JPEG_decompress image to_image 157

TMG_JPEG_decompress_image_to_image

USAGE

Terr TMG_JPEG_decompress image to_image(Thandle Hjpeg_image, Thandle Himage, uil6in_format,
uil6 out_format)

ARGUMENTS
Hjpeg_image Handleto compressed image.
Himage Handle to raw image.
in_format TMG_MEMORY or TMG_FILE.

out_format TMG_MEMORY or afiletype: TMG_TIFF, TMG_TGA, TMG_EPS, TMG_BMP etc.

DESCRIPTION

This function decompresses a compl ete image using the JPEG baseline compression algorithm. Compressed
image data is read from Hjpeg_image, and raw image data written to Himage. If the parameter, in_format, is
set to TMG_MEMORY, compressed image datais read directly from memory (referenced by Hjpeg_image).
If in_format is set to TMG_FILE, the JPEG datais read from the JPEG/JFIF file associated with
Hjpeg_image. Similarly, if the parameter, out_format, is set to TMG_MEMORY, raw image data is written to
memory (in Himage). If out_format is set to afile type, for example TMG_TIFF, it iswritten directly to the
file referenced by Himage in that format. If thelines this_strip parameter of Hjpeg_image isless than the
total image height, the decompression is performed in strips.

When decompressing colour images to memory, the output pixel format may be YUV 4:2:2 or RGB
depending on the pixel format set in Himage (see TMG_image_set_parameter with TMG_PIXEL_FORMAT).
By default the decompressed image will have the pixel format TMG_RGB?24, but if the pixel format is set to
TMG_YUV422 prior to calling this function, the pixel format of the decompressed image will be
TMG_YUV422.

Its recommended that images are compressed a strip at atime (set lines_this_strip to 8 using
TMG_image set_parameter), because this function uses several intermediary images internally.

Thisfunction is a convenient way of decompressing from file to file with just one call.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
See the extended examplesin the “ Sample Applications’ section.

BUGS/NOTES
Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

SEE ALSO
TMG_JPEG_decompress, TMG_JPEG_compress image to_image.

TMG Programmer’'sManual v4.0.4 TMG_JPEG file close 158

TMG_JPEG file _close

USAGE
Terr TMG_JPEG file_close(Thandle Himage)

ARGUMENTS
Himage A handleto a JPEG image.

DESCRIPTION

Thisfunction is used to close a JPEG file that has previously been opened using TMG_JPEG file open. Itis
rarely needed because the JPEG file will be closed by the functions that accessit. However if the
(decompression) processis aborted it will be necessary for the application program to close the file itself.

The example below shows a situation in which the JPEG image is not decompressed, but simply examined,
which requires the use of this function.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment uses TMG_JPEG file_open to see what type of image itis. It then needsto use
TMG_JPEG file closeto closethefile. TMG_JPEG file read could be used but that would be slower and
have to allocated memory for the JPEG data.

ui 16 Pi xel For mat ;

TMG_ i nage_set _i nfil ename(hJPEQ mage, “car.jpg”);
TMG_JPEG fil e_open(hJPEGQ mage) ;
Pi xel Format = (ui 16) TMG_ i nage_get _par anet er (hJPEA mage, TMG Pl XEL_FORVAT) ;
if ((Pixel Format == TMG YW422) || (Pixel Format == TMG RGB24))
printf(“lts a col our inmage”);
else if (Pixel Format == TMG_Y8)
printf(“lts a grayscale inage”);

TMG_JPEG fil e_cl ose(hJPEG nage) ;

BUGS/NOTES

For use with decompression directly from file, this function is only supported when using Crunch (hardware)
JPEG decompression. It is not supported when using TMG software JPEG decompression - in this mode the
JPEG file must be read into memory first.

The function CRUNCH_decompress or CRUNCH_decompress image to_image will close thefile
automatically after it has been decompressed. However if it is not decompressed (perhaps because the
operation was aborted), the application program should call TMG_JPEG file close directly.

The Huffman tables are currently not read in and “default” Huffman tables as suggested in the JPEG
specification are aways used.

SEE ALSO

TMG_JPEG file open, TMG_image get_infilename,
TMG_image get_outfilename, TMG_JPEG file read.

TMG Programmer’'sManual v4.0.4 TMG_JPEG file_open 159

TMG_JPEG_file_open

USAGE
Terr TMG_JPEG file_open(Thandle Himage)

ARGUMENTS
Himage A handleto a JPEG image.

DESCRIPTION

This function reads all the JPEG header information from a JPEG file, referenced by Himage, but does not
read the JPEG dataitself. It leavesan internal file pointer (internal to Himage) pointing at the JPEG data for
use by other processing functions. This can be useful when memory islimited.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “ Sample Applications’ section. See also the example for
TMG_JPEG file close.

BUGS/NOTES

Thisfunction is only supported when using Crunch (hardware) JPEG decompression. It is not supported
when using TM G software JPEG decompression - in this mode the JPEG file must be read into memory first.

The function CRUNCH_decompress or CRUNCH_decompress image to_image will close thefile
automatically after it has been decompressed. However if it is not decompressed, the application program
should call TMG_JPEG file close directly.

The Huffman tables are currently not read in and “default” Huffman tables as suggested in the JPEG
specification are aways used.

SEE ALSO

TMG_image get_infilename,
TMG_image get_outfilename, TMG_JPEG file read, TMG_JPEG file close,
TMG_JPEG_sequence calc_length

TMG Programmer’'sManua v4.0.4 TMG_JPEG file read 160

TMG_JPEG file_read

USAGE
Terr TMG_JPEG file_read(Thandle Hjpeg_image)

ARGUMENTS
Hjpeg_image A handleto a JPEG image.

DESCRIPTION

Thisfunction reads a full JPEG image from file into Hjpeg_image in one go (i.e. not in strips). The internal
image parameter lines _this strip is set to height to indicate that the whole image is present (as compressed
JPEG data). Note that this function does not optimise the amount of memory it uses for the JPEG data — it
actually allocates the same amount of memory as would be used in araw image. Thisis a speed optimisation
at the detriment of memory efficiency (the amount of JPEG data is not known in advance). For memory
optimisation, either the memory can be allocated and locked in advance by the application (see

TMG_image set ptr), or more simply, the function TMG_JPEG_sequence_build can be used.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_JPEG buffer_read, TMG_image read, TMG_JPEG file write, TMG_image get_infilename,
TMG_image get_outfilename.

TMG Programmer’'sManual v4.0.4 TMG_JPEG file write 161

TMG_JPEG file_write

USAGE
Terr TMG_JPEG file write(Thandle Hjpeg_image, uil6 TMG_action)

ARGUMENTS

Himage A handleto a JPEG image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.
DESCRIPTION

This function writes the JPEG image, Hjpeg_image, to a JPEG/JFIF file. It may be called as part of a strip
processing loop, in which case it will automatically write the amount of compressed data produced so far by
the compression process. In thisinstance, the internal image parameter lines_this strip, would be used as an
indicator of when the last strip of compressed data is written so that an EOI (End of Image) marker can be
appended to the end of the data stream.

If the whole compressed image is written as one strip, lines _this_strip should be set to the image height, in
which case the EOl marker will again be automatically appended. Alternatively, if TMG_JPEG file writeis
called with TMG_RESET, the EOI marker isimmediately written to the file.

Note that TMG_JPEG file read setslines_this_strip to the image height.
Normally this function would not be used, but the wrapper function TMG_image_write used instead.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
See the extended examplesin the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_JPEG_buffer_write, TMG_image write, TMG_JPEG file read, TMG_image get_infilename,
TMG_image _get_outfilename.

TMG Programmer’'s Manual v4.0.4 TMG_JPEG_image create 162

TMG_JPEG_image_create

USAGE
Terr TMG_JPEG_image create()

ARGUMENTS

None.

DESCRIPTION

Thisfunction creates a Timage structure and Tjpeg structure which is pointed to from the Timage structure,
and returns a handle to that Timage structure. It also performs some initialization - that is characters strings
are set to ‘\O' and the data pointers set to NULL. The variable lines this strip isset to 8. Note that no
memory is created for the JPEG dataitself - thisis performed by TMG functions. The Tjpeg structure can
hold single or multiple (motion) JPEG encoded image(s) or a strip of asingle image.

Note that a JPEG image is a superset of an ordinary image. Note that a JPEG image can hold either JPEG
data or raw image data (but not both unlessit is the same image). Seethefile“tmg.h” for the actual structure

definitions.
RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of

this manual.
EXAMPLES

The following code creates an image and gets a handle to it:
Thandl e hJPEA nage; /* Handle to a JPEG i nage structure */

if (ASL_is_err(hJPEA mage = TMG JPEG i nage_create()))
printf(“Failed to create a JPEG i nage”);

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image destroy, TMG_image_create.

TMG Programmer’'sManual v4.0.4 TMG_JPEG_sequence_build 163

TMG_JPEG_sequence_build

USAGE
Terr TMG_JPEG_sequence_build(Thandle Hin_image, Thandle Hout_image)

ARGUMENTS
Hin_image Handle to the input image or TMG_NULL.
Hout_image Handle to the output image.
DESCRIPTION

Thisfunction is builds a JPEG sequence of images. The input images are sequentially added to the JPEG
data stream in Hout_image. Restart markers are inserted between each frame (or scan in JPEG terminology)
in the data stream. Note that it is assumed that each successive image is of the same type and has the same
width and height.

This function can also be used to optimise the memory usage by the compressed data. When memory is
alocated for a JPEG image, an excessis allocated, because the precise requirements cannot be predicted in
advance. If Hin_imageis set to TMG_NULL, the memory allocation for Hout_image will be re-done to
match precisely its requirements. Obvioudly this can only be done when Hout_image contains avalid JPEG
image.

For amotion JPEG sequence acquisition of tens of frames, note that several megabytes may typically be used.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the Crunch Library Programmer’s Manual for example code and the file “seq.c” available with the

Snapper SDK.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG_sequence _calc_length.

TMG Programmer’s Manual v4.0.4 TMG_JPEG_sequence _calc_length 164

TMG_JPEG_sequence_calc_length

USAGE
Terr TMG_JPEG_sequence_calc_length(Thandle Hjpeg_image)

ARGUMENTS
Hjpeg_image Handleto JPEG compressed image sequence.

DESCRIPTION

This function cal culates the sequence length of a motion JPEG file after the function TMG_JPEG file open
has been called. It isdesigned to be used in conjunction with the Crunch JPEG hardware replay functions
(CRUNCH_sequence _replay).

The number of frames is calculated by scanning the file for the number of restart markers in the JPEG data.
(Restart markers are used to signify the end of a frame in a sequence of JPEG frames when stored in asingle
JPEG/JFIF file)

If TMG_JPEG file read isused (instead of TMG_JPEG file_open), then the number of frames of JPEG data
isautomatically calculated and stored in Hjpeg_image, as part of the operation of TMG_JPEG file read.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment uses open a (motion) JPEG file and cal cul ates the sequence length ready for
replay:

TMG_ i nage_set _i nfil enane(hJPEQ mage, “sequence.jpg”);

TMG_JPEG fil e_open(hJPEGQ mage) ;

/* Now fill in the internal TMG i nage paranmeter “numfranes” */

TMG_JPEG sequence_cal c_I| engt h(hJPEGQ nage) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG file read, TMG_JPEG file open, TMG_JPEG_sequence set start frame.

TMG Programmer’'sManual v4.0.4 TMG_JPEG_sequence extract_frame 165

TMG_JPEG_sequence_extract_frame

USAGE
Terr TMG_JPEG_sequence_extract frame(Thandle Hin_image, Thandle Hout_image, ui32 frame)

ARGUMENTS

Hin_image Handle to JPEG compressed image sequence.
Hout_image Handle to output (single frame) JPEG image.
frame The number of the frame to extract (from 1..N).

DESCRIPTION

This function copies asingle JPEG image from a JPEG sequence in Hin_image to Hout_image. The frame
number to copy is given by frame_num.

Hout_image must be a JPEG image (i.e. created using TMG_JPEG image create). Any JPEG image
memory in Hout_image will be destroyed and new memory allocated to precisely match the size of the
extracted frame (unless the memory is locked).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment extracts the 8th frame of a 16 frame motion JPEG sequence and savesit asan
individual file:

TMG_ i mage_set _i nfil enane(hJPEQ mage, “sequence.jpg”);
TMG _JPEG fil e_read(hJPEGQ mage) ;

hQut | rage = TMG _JPEG i mage_create();
TMG_JPEG sequence_extract _franme(hJPEQ mage, hQutlnmage, 8);
TMG_ i nage_set _outfil enane(hQutl mage, “frane08.jpg”);
TMG JPEG file_wite(hQutlmge, TMG RUN);
BUGS/NOTES

The starting frame (set using TMG_JPEG_sequence set_start frame) gets changed as a side effect of using
this function.

This function only works on JPEG sequence files stored in memory - i.e. the JPEG file must have been read in
using TMG_JPEG file read.

SEE ALSO
TMG_JPEG file read, TMG_JPEG file open, TMG_JPEG sequence set start frame.

TMG Programmer’'sManual v4.0.4 TMG_JPEG_sequence set_start_frame 166

TMG_JPEG_sequence_set_start_frame

USAGE
Terr TMG_JPEG_sequence_set_start frame(Thandle Hjpeg_image, ui32 start_frame)

ARGUMENTS
Hjpeg_image Handleto JPEG compressed image sequence.
start_frame Desired starting frame.

DESCRIPTION

This function sets the starting frame ready for replaying a sequence using the function
CRUNCH_sequence_replay (JPEG hardware acceleration function). It will work on Hjpeg_image whether
theimageisin memory or onfile. It works by scanning the file looking to the inter-frame (restart) markers.
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES
See the Crunch Library Programmer’s Manual for example code and the file “seq.c” available with the

Snapper SDK.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG_sequence _calc_length.

TMG Programmer’'sManua v4.0.4 TMG_JPEG_set_image 167

TMG_JPEG_set_image

USAGE
Terr TMG_JPEG_set_image(Thandle Himage, Thandle Hjpeg_image)

ARGUMENTS

Himage Handle to the input image.
Hjpeg_image Handleto the output JPEG image.

DESCRIPTION

Thisfunction is sets up the JPEG parameters in Hjpeg_image based on the raw image parameters in Himage.
Thisfunction israrely needed in a user application, but a novel useis given in the example below.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment is an example of how to “reconstruct” a JPEG file ready for decompression
from only the JPEG data, the image width, height and (original) Q factor:

/* The image is a colour 256 x 256 inage */

/* NunmBytes contains the amobunt of the JPEG data */

/* pJPEGData points to the JPEG data */

hJPEG mage = TMG JPEG i mage_create();

TMG i mage_set _par anet er (hJPEGA nage, TMs W DTH, 256);

TMG_ i nage_set _par anet er (hJPEG nage, TMG HEI GHT, 256);

TMG i nage_set _par anmet er (hJPEG nage, TMG Pl XEL_FORNMAT, TMG RGB24);
TMG_JPEG set _i mage(hJPEG mage, hJPEGQ nage) ;

TMG JPEG set _Quality_factor(hJPEGQ nage, 32);

TMG_JPEG nmake_Q t abl es(hJPEG mage) ;

TMG_JPEG set _defaul t _H t abl es(hJPEG nage) ;

TMG_ i mage_set _ptr (hJPEGQ mage, TMG JPEG DATA, pJPEGDat a) ;

TMG_ i nage_set _par anmet er (hJPEG nage, TMG JPEG NUM BYTES_DATA, NunBytes);
/* hJPEA mage is now a valid JPEG i mage */

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG_image create.

TMG Programmer’s Manual v4.0.4 TMG_JPEG_set Quality factor 168

TMG_JPEG_set_Quality_factor

USAGE
Terr TMG_JPEG_set_Quality factor(Thandle Hjpeg_image, uil6 Q_ factor)

ARGUMENTS

Hjpeg_image Handleto JPEG image.

Q _factor An integer representing image quality after compression from 1 to 100.
DESCRIPTION

Sets the JPEG quality factor for compression. This parameter is only used in compression. |t represents the
quality of the compressed image and is therefore related to compression ratio, i.e. if ahigh quality factor is
set, the compressed image quality will be high, and the compression ratio not as high as it would be if alower
quality factor was used. The default quality factor is 32, which resultsin the coefficients in the standard Q
(Quantization) tables, as defined in the JPEG specification, being halved. i.e. the Quality factor is normalised
to 16. Thisis common practice in JPEG software packages. The range of the quality factor isfrom 1 to 400,
although numbers above 100 will give very little improved quality, and low (typically 6:1) compression
ratios. Using the default Quality factor of 32 resultsin an image which is*usualy nearly indistinguishable
fromthe original” (quote from the JPEG Specification).

The default quality factor of 32 isused if this function (or TMG_JPEG_set Quantization_factor) is not
called. Note that adefault quality factor of 32 is equivalent to a default quantization factor of 50.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code sets the quality factor:
TMG _JPEG set _Quality_factor(H nage, 20);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG set Quantization_factor.

TMG Programmer’s Manual v4.0.4 TMG_JPEG set Quantization factor 169

TMG_JPEG_set_Quantization_factor

USAGE
Terr TMG_JPEG_set_Quantization_factor(Thandle Hjpeg_image, uil6 Q factor)

ARGUMENTS
Hjpeg_image Handleto JPEG image.
Q_factor JPEG quantization factor.
DESCRIPTION

Sets the JPEG quantization factor for compression. This parameter is only used in compression. It isused to
generate the quantization table which defines the number of quantization levels at which the luminance and
chrominance frequencies are quantized to. In simple terms, a higher quantization factor means lower image
quality and vice-versa. The quantization factor is normalised to 50, which is consistent with other JPEG
compression systems. This means that when set to 50, the luminance and chrominance quantization tables are
identical to those in the JPEG Specification.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code sets the quantization factor:
TMG_JPEG set _Quanti zati on_f act or (Hbase, 100);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_JPEG_set_Quality factor.

TMG Programmer’'s Manual v4.0.4 TMG_LUT_apply 170

TMG_LUT _apply

USAGE
Terr TMG_LUT_apply(Thandle Hin_image, Thandle Hout_image, Thandle hLUT, uil6 TMG_action)

ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
hLUT Handleto a TMG LUT structure.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

Thisfunction performsa LUT operation on Hin_image to produce an output image Hout_image. This
function can be used to enhance an image through the use of brightness, contrast, gamma and individual
colour controls (for colour balancing). The function TMG_LUT_generate is used to generate the LUT before
thisfunction iscalled (and TMG_LUT _create to create it prior to generation).

The functions accepts the following image types: TMG_YUV422, TMG_Y8, TMG_RGB24, TMG_RGB16,
TMG_RGB15 and TMG_RGBS. If the individual colour intensities have been changed from their default
values, the function operates slower with a’Y UV image than an RGB image. Thisis because it must convert
from YUV colour space to RGB colour space in order to usethe LUTs. Thereforeit is usualy better to
operate on the RGB image - i.e. convert to (or use) a RGB image before using TMG_LUT _apply.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES
See the extended examplesin the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_LUT create, TMG_LUT_generate.

TMG Programmer’s Manual v4.0.4 TMG_LUT create 171

TMG_LUT create

USAGE
Terr TMG_LUT_create(ui32 num_elements, uil6 element_size)

ARGUMENTS
num_elements The size of the look up table in terms of the number of elements.
element_size The size of each element in bytes - must be either 1 or 2.
DESCRIPTION

Thisfunction creates a Ttmg_LUT structure by the use of malloc, and returns a handle to that structure. The
LUT structure contains four independent LUTSs - one for luma (grayscale data) and one for red, green and
blue image data. Separate LUTs for red, green and blue allow colour balancing as well as overall
brightness/contrast variation.

The size of the LUT is determined by the two parameters num_elements and element_size. num_elements
must be less than or equal to 256 if element_sizeis 1, or less than or equal to 65536 if element_sizeis 2.

The handle to this structure is used by the LUT function TMG_LUT _apply.

RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code createsa LUT and gets a handle to it:
Thandl e hLUT; /* Handle to LUT */

/* Create a LUT of 256 elenents (8 bits in, 8 bits out) */

if (ASL_is_err(hLUT = TM5 LUT _create(256, 1))
printf(“Failed to create LUT");

See also the extended examples in the “ Sample Applications” section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_LUT _destroy, TMG_LUT apply, TMG_LUT_generate, TMG_LUT_get_ptr.

TMG Programmer’'s Manual v4.0.4 TMG_LUT_destroy 172

TMG_LUT_destroy

USAGE
Terr TMG_LUT_destroy(Thandle hLUT)

ARGUMENTS
hLUT Handleto aTMG LUT structure or TMG_ALL_HANDLES.

DESCRIPTION
Destroysa Ttmg_LUT structure by freeing all the memory associated with that structure.

If the parameter TMG_ALL_HANDLES s used, all previoudly created LUT structures are destroyed and their
associated handles freed.

TMG_image destroy(TMG_ALL_HANDLES) will destroy all TMG LUT structures by calling
TMG_LUT destroy for all LUT handles. Thisisaconvenient way of destroying everything with just one
function call.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys a previously created LUT:
Thandl e hLUT; /* Handle to LUT */

:I'IVG_LUT_dest roy(hLUT);
See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_LUT create, TMG_image destroy.

TMG Programmer’s Manual v4.0.4 TMG_LUT_generate 173

TMG_LUT generate

USAGE

Terr TMG_LUT_generate(Thandle hLUT, 16 brightness, 116 contrast, i16 gamma, i16 ri, i16 gi, i16 bi)

ARGUMENTS

brightness
contrast
gamma

ri

o]

bi

DESCRIPTION

Desired brightness setting (from 0 to 200, default 100).
Desired contrast setting (from 0 to 200, default 100).
Desired gamma setting (from O to 400, default 100).
Desired red intensity (from O to 200, default 100).
Desired green intensity (from 0 to 200, default 100).
Desired blue intensity (from 0 to 200, default 100).

This function generates the actual LUT datain the LUT structure referenced by hLUT. This function must be
called before the function TMG_LUT _apply is used to perform aLUT operation. If called with the default
values, the resulting LUTswill contain straight lines and therefore have no effect on theimage. If the LUT
function is going to operate on a grayscale image, then ri, gi and bi have no effect and should be set to zero.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

See the extended examplesin the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_LUT create, TMG_LUT _apply, TMG_LUT get_ptr.

TMG Programmer’'sManual v4.0.4 TMG_LUT_get_ptr 174

TMG_LUT get_ptr

USAGE
void *TMG_LUT _get_ptr(Thandle hLUT, uil6 colour)

ARGUMENTS
hLUT Handleto a TMG LUT structure
colour Colour plane of the LUT required. One of TMG_GRAY, TMG_RED, TMG_GREEN or
TMG_BLUE.
DESCRIPTION

This function returns the pointer to the actual ook up table data for that particular colour. This can be useful,
if for example, the TMG_LUT_generate function was being used to generate data for another function - for
example programming hardware LUTSs.

The returned pointer type must be cast the pointer type that reflects the size of the datain the LUT. If the
LUT hasan element size of 1 (see TMG_LUT _create), then the result from TMG_LUT_get_ptr should be cast
toui8*. If the element sizeis 2, then the result should be cast to IM_U116*. (For all operating systems apart
from Windows 3.1, IM_UI16* isequivalent to ui16*.)

RETURNS
A pointer to the LUT data on success, otherwise NULL.

EXAMPLES

The following code gets the pointer froma LUT structure:
ui 8* pLUT; /* Pointer to 256 el enent LUT. */

hLUT = TMG LUT create(256, 1);

bLUT (ui 8) TMG LUT get _ptr(hLUT);

See also the extended examples in the “ Sample Applications’ section.

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_LUT create, TMG_LUT_generate.

TMG Programmer’'sManual v4.0.4 TMG_SPL_2fields to frame 175

TMG_SPL_2fields_to_frame

USAGE
Terr TMG_SPL_2fields_to_frame(Thandle Himagel, Thandle Himage?2, Thandle Hout_image, uil6
TMG_action)
ARGUMENTS
Himagel Handle to an input image - field 1
Himage2 Handle to an input image - field 2

Hout_image Handle to the output image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

Thisfunction is similar to the function TMG_SPL field_to_frame, but takes two input images which represent
field 1 and field 2 of a complete frame. These images are interlaced to provide a complete frame,
Hout_image. Thisfunction islikely to be used in conjunction with the Snapper sequence acquisition mode,

in which fields are acquired in a real-time sequence to separate images. This function can be used to re-
construct full frames.

If the internal image flag TMG_HALF_ASPECT is set, the function uses the parameter TMG_FIELD_|ID to
determine which field iswhich, so it can correctly interlace them. If thisflagisnot set, then Himagel will be

assumed to be field 1 and written to lines 1, 3, 5 etc in the output image, and Himage2 will be written to lines
2,4, 6 etc.

For parameter and flag information, see TMG_image set_parameter and TMG_image_set_flags respectively.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how to reconstruct a frame sequence from a sequence of fields:

/* hlmages is an array of fields captured in a sequence from
* Snapper-24. This code re-interlaces them and di splays the
* resulting franes.
*/
for (n = 0; n < SequenceLength; n += 2) {
TMG_SPL_2fiel ds_to_frame(hl mages[n], hlnages[n+1l], hTenpl mage, TMG RUN);
TMG convert _to_RGB16(hTenpl mage, hQutl mage, TMG RUN);
TMG_di spl ay_i mage(hDi spl ay, hCQutlnmage, TMG RUN);
}

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL field_to _frame.

TMG Programmer’'sManual v4.0.4 TMG_SPL_Data32 to Y8 176

TMG_SPL_Data32_to_Y8

USAGE
Terr TMG_SPL_Data32_to Y8(Thandle Hin_image, Thandle Hout_image, uil6 wshiftRight, uil6
TMG_action)

ARGUMENTS
Hin_image Handle to the input image.

Hout_image Handle to the output image.
wshiftRight The number of bitwise right shift operationsto apply to each 32 bit pixel in Hin_image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function takes a 32 bit input image, which typically contains data from a digital camera, and facilitates
the conversion to 8 bit grayscale. Thisis useful when, for example, the image data from the camerais 12 bit
—this function allows it to be conveniently converted to an 8 bit format suitable for display etc. Care must be
taken with endian issues and the source data format.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how to convert 12 bit data to an 8 bit grayscale image suitable for
display:

/* hSrclmage contains a 12 bit grayscale image — we'll convert the

* image data to 8 bit so that we can viewit.

*/

TMG_SPL_Dat a32_t o_Y8(hSrcl nage, hY8l mage, 4, TMG RUN);

TMG di spl ay_i mage(hDi spl ay, hY8l mage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_XXXX32_to_V8.

TMG Programmer’'s Manual v4.0.4 TMG_SPL field to frame 177

TMG_SPL _field to_frame

USAGE
Terr TMG_SPL field to_frame(Thandle Hin_image, Thandle Hout_image, uil6 winterpScheme, uil6
TMG_action)

ARGUMENTS
Hin_image Handle to the input image (must be TMG_Y8, TMG_YUV422 or TMG_RGB?24).
Hout_image Handle to the output image.

winterpScheme 1, 2, 3 or 4 - selects one of four conversion algorithms.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.

DESCRIPTION

This function takes the input image, treatsit asif it is one video field of an interlaced frame, and generates the
other field to give a complete frame. 1t doubles the vertical size of the image in one of the following ways:

1

2)
3

4)

Line Duplication - Line 1 of the input image is duplicated to form lines 1 and 2 in the output image;
Line 2 of the input image is duplicated to form lines 3 and 4 in the output image etc.

Line Average — Intermediate lines of the output image are generated by (InputLineA + InputLineB) / 2
Simple Bilinear Interpolation — Intermediate lines of the output image are generated by the following
filter on pairs of input lines: 1 sqrt(2) 1 (Three pixels from InputLineA)
aP (Qut put Pixel)
1 sqrt (2) 1 (Three pixels from I nputLineB)

Median Filter Interpolation — Each output pixel is the average of the 3rd and 4th ranked of the six
surrounding input pixels (i.e. when the six input pixels are sorted in order of magnitude).

This function might be needed in an application that acquires single video fields, which subsegquently have to
be viewed as a normal image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how to use the function:

/* carpark.tif is a single field of video grabbed froma renote security
* canera - we use TM5 SPL_field_to frame to viewit. (uses Line Averaging).
*/

TMG i mage_set _infil ename(hl mage, “carpark.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG _AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG SPL_field_to_frame(hl mage, hCutlnmage, 2, TMG RUN);

TMG_di spl ay_i mage(hDi spl ay, hCutl mage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_2fields to frame, TMG_IP_pixel_rep, TMG_IP_subsample.

TMG Programmer’'sManual v4.0.4 TMG_SPL_HSI_to RGB_pseudo_colour 178

TMG_SPL_HSI to RGB_pseudo_colour

USAGE

Terr TMG_SPL_HS_to RGB_pseudo_colour(Thandle Hin_image, Thandle Hout_image, uil6
TMG_action)

ARGUMENTS

Hin_image Handle to the input TMG_HS image.
Hout_image Handle to the output TMG_RGB24 image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function simply maps the HSI planesto RGB planes. That is, Hue is mapped directly to Red, Saturation
to Green and Intensity to Blue. This can be useful when examining HSI images, asit allows an HS| imageto
be put into a representation that standard image viewing packages can recognise and hence view — for
example to compute and display histograms for each HSI component.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to convert an image to HSI format and then to a pseudo colour RGB
format suitable for saving asa TIFF file;

TMG_ i mage_r ead(hl nl mage, TMG_NULL, TMG _RUN);

TMG_i mage_convert (hl nl mrage, hYuvl mage, TMG YUv422, 0, TMG RUN);

TMG_ i mage_convert (hYuvl nage, hHsilnmage, TMG HSI, 0, TMG RUN);

TMG _SPL_HSI _t o_RGB_pseudo_col our (hHsi | mage, hPseudoRgbl nage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_YUV422 to RGB pseudo_colour, TMG_image_convert.

TMG Programmer’'sManual v4.0.4 TMG_SPL_YUV422 to RGB_pseudo_colour 179

TMG_SPL_YUV422 to_RGB_pseudo_colour

USAGE

Terr TMG_SPL_YUV422 to RGB_pseudo_colour(Thandle Hin_image, Thandle Hout_image, uil6
TMG_action)

ARGUMENTS

Hin_image Handle to the input TMG_YUV422 image.
Hout_image Handle to the output TMG_RGB24 image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function simply maps the YUV 4:2:2 planesto RGB planes. That is, luminance (Y) is mapped directly
to Red, the U component to Green and the V component to Blue. This can be useful when examining YUV
4:2:2 images, asit alowsa YUV 4:2:2 image to be put into a representation that standard image viewing
packages can recognise and hence view — for example to compute and display histograms for each YUV 4:2:2
component.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to convert an imageto YUV 4:2:2 format and then to a pseudo
colour RGB format suitable for saving asa TIFF file:

TMG_ i mage_r ead(hl nl mage, TMG _NULL, TMG _RUN);

TMG_i mage_convert (hl nl nrage, hYuvl mage, TMG YUWv422, 0, TMG RUN);

TMG_SPL_YWV422 t o _RGB_pseudo_col our (hYuvl nage, hPseudoRgbl mage, TMG _RUN);
BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_HSY to RGB_pseudo_colour, TMG_image convert.

TMG Programmer’'sManual v4.0.4 TMG_SPL_XXXX32 to Y8 180

TMG_SPL_XXXX32 to_Y8

USAGE
Terr TMG_SPL_XXXX32_to_Y8(Thandle Hin_image, Thandle Hout_image, uil6 plane, uil6
TMG_action)
ARGUMENTS
Hin_image Handle to the input image.
Hout_image Handle to the output image.
Plane 1, 2, 3 or 4 representing the plane to strip out of the input image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes a multi-planar input image - for example TMG_RGBX32, and strips out one component,
for example the red component, and stores it as a grayscale image in Hout_image.

plane refers to the byte position in the RGB colour format (see the example below).

This function can be used if, for example, a colour image is acquired from colour acquisition hardware (three
channel RGB) connected to three monochrome cameras and the grayscale image from one camerais required.
See the example below.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how to use the function:

/* hSrclmage contains a colour inmage in the form RGBX32 which actually
* represents three grayscal e i mages acquired from col our acquisition
* hardware connected to three synchroni zed nmonochrone caner as.

*/
switch (Col ourPl ane) {
case RED: /* read out correct nono plane fromred channel */
TMG_SPL_XXXX32_t o_Y8(hSrcl mage, hG aylmage, 1, TMG RUN);
br eak;
case GREEN:
TMG_SPL_XXXX32_t o_Y8(hSrcl mage, hG ayl mage, 2, TMG RUN);
br eak;
case BLUE:
TMG_SPL_XXXX32_t o_Y8(hSrcl mage, hG ayl mage, 3, TMG RUN);
br eak;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_Data32_to_V8.

TMG Programmer’'sManua v4.0.4 TMG_WVLT_buffer_read 181

TMG_WVLT buffer_read

USAGE
Terr TMG_WVLT_buffer_read(Thandle hWMtimage, ui8 *pbData, ui32 dwBytesData)

ARGUMENTS
hWwvitimage A handleto awavelet image.
pbData Pointer to the buffer containing data in compressed wavelet stream format.
dwBytesData ~ The amount of total datain the buffer (complete image in streamed format).
DESCRIPTION

This function reads a wavel et compressed image from the buffer, pbData, into hWvitimage. Dueto the
progressive decompression ability of wavelet compression, if only partial datais received then the
decompression agorithm will produce as best a picture as it can from the data received so far.

RETURNS
TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a compressed image from a buffer and decompressesit:

TMG_W/LT_buffer_read(hwl tl nage, pbBuf, dwSize);
TMG_W/LT_deconpress(hWil t | mage, hlmage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WWLT buffer_write, TMG_WNVLT file read.

TMG Programmer’'sManual v4.0.4 TMG_WVLT_buffer_write 182

TMG_WVLT buffer_write

USAGE
Terr TMG_WVLT_buffer_write(Thandle hWiitimage, ui8 *pbData, ui32 * pdwCount, ui1l6 TMG_action)

ARGUMENTS
hWwvitlmage A handle to awavelet compressed image.
pbData Pointer to target buffer (user allocated).
pdwCount Pointer to a 32 bit unsigned word, filled in by the function, indicating the total amount of

data written (in bytes).
TMG_action TMG_INIT or TMG_RUN for normal operation.
DESCRIPTION

This function writes the wavelet compressed image, hWwvltlmage, to a memory buffer in wavelet compressed
stream format. 1t operates on the whole image at once and therefore should not be called as part of a strip
processing loop.

If thisfunction isfirst called with TMG_RUN, then both the header data and image data are written to the
buffer.

However, if thisfunctionisfirst called with TMG_INIT, only the static ‘header’ datais written to the buffer.
If this function is then secondly called with TMG_RUN, only the image data is written to the buffer. The
function then resets internally and assumes the next call isthe ‘first’ call.

Typically the function would only be called once using TMG_RUN. This function can be used to stream the
wavelet image to a buffer ready for transmission over a network.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment shows how the function could be used to write the wavelet data to the buffer in
two passes:

/* Wite settings. */

TMG WLT _buffer_wite(hWltlmage, pbBuf, &IwSize, TMG INT);

/* Wite image data. */

TMG WLT_buffer_write(hwltlmge, pbBuf + dwSize, &IwSize, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WWVLT buffer read, TMG_WVLT file write.

TMG Programmer’'sManua v4.0.4 TMG_WVLT_compress 183

TMG_WVLT_compress

USAGE
Terr TMG_WVLT_compress(Thandle himage, Thandle hWivitimage, uil6 TMG_action)

ARGUMENTS

hlmage Handle to araw (uncompressed) image.
hVWvitlmage Handle to awavelet compressed image.
TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function compresses an image using the discrete wavelet transform, followed by runlength encoding and
then optional Huffman encoding. See also TMG_WVLT _set Quality factor. The whole of theimageis
compressed in one go (i.e. not in strips).

When the function is called with TMG_action set to TMG_RUN, raw image datais read from himage, and
compressed wavel et data written to hWvitimage. If the functioniis called with TMG_action set to
TMG_RESET the compression processis aborted. TMG_RESET israrely needed.

This function will compress TMG_Y8 and TMG_YUV422 imagesonly. YUV dataisinternally processed in
three passes.

The filter bank used in the wavelet compressor is the Daubechies Stap/7tap filter and it is implemented using
the lifting technique detailed in the JPEG2000 specification. However note that the TMG wavelet format is
(currently) not fully JPEG2000 compliant.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment readsin a TIFF file, compresses it and writes it as a compressed wavelet file:

/* Create TMG i mages. */

hWil t 1 mage = TMG W/LT_i nmage_cr eat e(TMG_ WLT_COVPRESS MORE) ;
hl magel = TMG i nage_create();

hl mage2 = TMG_ i mage_create();

TMG_ i nage_set _infil enane(hl magel, “sky.tif”);
TMG_i nage_set _par anet er (hl magel, TMG HElI GHT, TMG_AUTO HEI GHT) ;
TMG_ i nage_set _outfil enane(hWi t 1 mage, “sky.wt”);

/* Load input inmage fromfile. */
TMG_ i nage_r ead(hl magel, TMG NULL, TMG RUN);

/* If the inage data is RGB, then convert it to YUv422. */
dwPi xel Format = TMG_ i mage_get _par anet er (hl nagel, TMG Pl XEL_FORVAT) ;
if (TMG_RGB24 == dwPi xel For nat)
{
TMG_ i mage_convert (hl magel, hlnmage2, TMG YW422, 0, TMG RUN);
TMG_ i mage_copy(hl nage2, hl nmagel);
}
/* Else convert paletted i mages to YUV422 or Y8 depending on palette. */
else if (TMG_RGB8 == dwPi xel For nat)

{
TMG_ i mage_convert (hl magel, hlnmage2, TMG Y8_OR RGB24, 0, TMG_RUN);

TMG Programmer’'sManua v4.0.4 TMG_WVLT_compress 184

dwPi xel Format = TMG_ i mage_get _par anet er (hl mage2, TMG Pl XEL_FORMAT) ;
if (TMG_RGB24 == dwPi xel For mat)
TMG i mage_convert (hl mage2, hlmagel, TM5 YWv422, 0, TMG RUN);
el se
TMG i mage_copy(hl mage2, hl nagel);
}

/* Set subbands iteration level to a non default value for conpression. */
TMG_W/LT_set _subbands(hWl t1rmage, 7);

/* Set Qfactor to a non default value for conpression. */

TMG W/LT_set _Quality_factor(hwltlnmage, 49);

/* Compress the input image. */
TMG_W/LT_conpress(hl magel, hWltlmge, TMG RUN);

/* Wite the inmage to file. */
TMG WLT file_wite(hWltlnmge, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO

TMG_WWVLT_decompress, TMG_WVLT image create, TMG_WVLT_set Quality factor,
TMG_WWLT set_subbands.

TMG Programmer’'sManua v4.0.4 TMG_WVLT_decompress 185

TMG_WVLT_decompress

USAGE
Terr TMG_WVLT_decompress(Thandle hWMtimage, Thandle himage, uil6 TMG_action)

ARGUMENTS
hWwvitimage Handle to wavelet compressed image.
himage Handle to raw (uncompressed) image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function decompresses a TMG wavelet image. The whole image is decompressed in one go and cannot
operate in strips.

If the function is called with TMG_action set to TMG_RUN, compressed image datais read from
hWwvItimage, and raw data written to himage. If the function is called with TMG_action set to TMG_RESET,
the decompression is aborted and member variables are reset.

This function supports progressive decoding. Thisis useful in the case where awavelet compressed imageis
being received over aslow link. The truncated image data (must include the static header) is passed to
TMG_WWLT buffer_read and the client then calls TMG_WVLT_decompress to decompress the partial image.
Only the complete subbands are processed which resultsin alower quality image. As more data arrives, the
process can be repeated to build up a higher quality image.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads in a compressed wavelet file, decompressesit and writesit to a TIFF file:

TMG_ i mage_set _infil ename(hWwl tl mage, “sky.wt”);

TMG_ i nage_set _outfil enane(hl nmagel, “sky.tif”);

/* Load input inmage fromfile. */

TMG WLT _file_read(hWltl mage);

/* Deconpress the input inmage. */

TMG_W/LT_deconpress(hWii t | mage, hlnagel, TMG RUN);

/* |f deconpressed inmage is YUV422, then convert it to RGB. */

dwPi xel Format = TMG_ i mage_get _par anet er (hl nagel, TMG Pl XEL_FORVAT) ;

if (TMG_YUv422 == dwPi xel For mat)

{
TMG_ i mage_convert (hl nagel, hlnmage2, TMG RGB24, 0, TMG RUN);
TMG_i mage_copy(hl rage2, hl nmagel);

}

/* Wite deconpressed inage to output file. */

TMG_ i mage_write(hl magel, TMG NULL, TMG TIFF, TMG_RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_VWLT_compress.

TMG Programmer’'sManua v4.0.4 TMG_WVLT file read 186

TMG_WVLT file read

USAGE
Terr TMG_WWLT file read(Thandle hWMtimage)

ARGUMENTS
hWwvitlmage A handle to awavelet compressed image.

DESCRIPTION
This function reads a wavel et compressed image from file into hWWtlmage.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a wavelet compressed file into a wavel et image structure and
decompresses it (the whole image in one go):

TMG_ i mage_set _infil ename(hwl tl mage, “sky.wt”);
TMG WLT_file_read(hWltl mage);
TMG_W/LT_deconpress(hWii t | nage, hYUVI nage, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WWLT buffer_read, TMG_WVLT file write.

TMG Programmer’'sManual v4.0.4 TMG_WVLT file write 187

TMG_WVLT file_write

USAGE
Terr TMG_VWWLT file write(Thandle hWitimage, uilé TMG_action)

ARGUMENTS

hWwvitimage A handle to awavelet compressed image.
TMG_action TMG_RUN for normal operation.

DESCRIPTION

This function writes the wavelet compressed image, hWwvtimage, to awavelet file. It writes the whole image
filein one go, i.e. it should not be called as part of a strip processing loop.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code fragment compresses a TMG_YUV422 image, then writes the compressed wavelet image
to afile (the whole image in one go):

TMG i mage_set _outfil enanme(hWi t 1 mage, “sky.wt”);

TMG_ i nage_set _par anmet er (hYUVI mage, TMG _HEI GHT, TMG_AUTO_HEI GHT) ;
TMG_W/LT_conpress(hYUVI nage, hWltlmge, TMG RUN);

TMG WLT file_wite(hWltlnmge, TMG RUN);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WVLT buffer_write, TMG_VWWLT file read.

TMG Programmer’'s Manual v4.0.4 TMG_WVLT image create 188

TMG_WVLT_image_create

USAGE
Terr TMG_WVLT image_create(uil6 wCompress)

ARGUMENTS
wCompress Either TMG_WVLT_COMPRESS FAST for normal operation, or
TMG_WWLT_COMPRESS MORE to use Huffman coding.
DESCRIPTION

This function creates an empty wavelet image, containing a Timage structure and a Twavel et structure which
is pointed to from the Timage structure, and returns a handle to that Timage structure. The Timage structure
isautomatically created by calling TMG_image create. It also performs some initialisation - that is various
parameters are set to default values.

In normal compression operation, the quantised wavel et transform coefficients are serialised and run length
encoded (producing most of the actual compression achieved by the wavelet transform codec). When
TMG_WVLT _COMPRESS MORE is used, a Huffman encoder stage is also applied which gives a small
improvement in compression ratio, at a cost of longer processing time.

RETURNS

On success avalid handleis returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates an image and gets a handle to it:
Thandle hW/ltlnmage = 0; /* Handle to a wavel et i nage structure. */

if (ASL_is_err(hWltlmage = TMG W/LT_i mage_creat e(TMG WLT_COVWPRESS FAST)))
printf(“Failed to create a wavel et image”);

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image create, TMG_WVLT _compress, TMG_VWLT image destroy.

TMG Programmer’'sManual v4.0.4 TMG_WVLT_image destroy 189

TMG_WVLT _image_destroy

USAGE
Terr TMG_WVLT _image_destroy(Thandle hWvitimage)

ARGUMENTS
hWwvitimage Handle to awavelet compressed image.

DESCRIPTION
This function destroys a wavelet image structure by freeing all the memory associated with that structure.

An image with locked memory (TMG_LOCKED) will have that memory automatically freed prior to the
image being destroyed.

Care must be taken with memory that has been allocated by the application and not the TMG library. If
memory has been allocated by the application and used by the TMG library (in an image structure), it must be
freed at the application level and the internal image pointer set to NULL before calling

TMG_WWLT image destroy. The second example for TMG_image_destroy shows how thisis done.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code destroys a previously created image:
Thandl e hWi t | mage;

/* Destroy the wavel et i mage structure. */
TMG_W/LT_i nage_destroy(hWl t | mage) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_image destroy, TMG_WVLT image create.

TMG Programmer’s Manual v4.0.4 TMG WVLT_set Quality factor 190

TMG_WVLT_set_Quality_factor

USAGE
Terr TMG_WWVLT_set_Quality factor(Thandle hWMtimage, uil6 wQ factor)

ARGUMENTS

hWwvitlmage Handle to wavelet image.

wQ_factor An integer representing image quality after compression from 0 to 400.
DESCRIPTION

This parameter sets the wavelet quality factor for compression. A quality factor of 400 is lossless, whereas 0
gives the most compression (smallest compressed file size). The default value is50. This givesa“visually
lossless’ image of approximately 7:1 compression ratio, when used in conjunction with a subband iteration
level of 6.

This parameter sets the level of quantisation that is applied to the wavelet transform coefficients. Thisisthe
basic mechanism to change the wavelet transform compression level. A lower quality factor resultsin coarser
quantisation of the coefficients. The quantiser uses a frequency dependent weighting taken from the
JPEG2000 spec, with higher spatial frequencies using larger quantisation steps. Asthe quality is reduced, so
the frequency weighting is shifted to lower spatial frequencies. The quantiser uses a method that increases the
incidence of zeroesin the output, but is not JPEG2000 compliant.

The quantiser reduces the quality weighting for sourcesindicated as U or V data. Thisincreasesthe
compression while maintaining perceived quality by exploiting the eye's reduced contrast sensitivity to
colour.

The default quality factor of 50 isused if thisfunctionis not called.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual .

EXAMPLES

The following code sets the quality factor (in this case, to the default value of 50) :
TMG W/LT_set_Quality_factor(hwltlmge, TMG WLT_QUALI TY_DEFAULT) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WVLT_compress, TMG_WNVLT_set subbands.

TMG Programmer’'sManual v4.0.4 TMG _WVLT_set_subbands 191

TMG_WVLT_set_subbands

USAGE
Terr TMG_WVLT_set subbands(Thandle hWMtimage, uil6 wlevels)

ARGUMENTS

hWwvitimage Handle to wavelet image.

wLevels The number of iterations to be used to produce subbands (from 1 to 32).
DESCRIPTION

Sets the number of iteration levels to be used to produce wavelet subbands. The default valueis 6. Using a
smaller value gives fewer subbands and hence faster compression/decompression, but also less compression.

In the wavelet transform operation, the first iteration divides the main image into four subbands, one of which
isalow pass filtered and subsampled version of the main image. Each successive iteration level dividesthe
low pass filtered and subsampled image into four subbands.

The following table show the number of subbands created for a number of iteration levels :-

wLevels | subbands | wlLevels | subbands
1 4 4 13
2 7 5 16
3 10 6 19

The default number of subband iteration levels of 6 isused if this function is not called.

RETURNS

TMG_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets the number of subband iteration levels (in this case, to the default value of 6) :
TMG_W/LT_set _subbands(hWl t1 mage, TMG W/LT_SUBBANDS) ;

BUGS/NOTES

There are no known bugs.

SEE ALSO
TMG_WWLT compress, TMG_WVLT set Quality factor.

	Introduction
	Concepts
	OVERVIEW
	A SIMPLE EXAMPLE
	MEMORY ALLOCATION
	IMAGE DATA VERSUS JPEG IMAGE DATA
	ADDING CUSTOM FUNCTIONS
	VIDEO FIELDS AND THE “TMG_HALF_ASPECT” FLAG

	Library Structure
	Pixel Formats
	INTERNAL IMAGE TYPES
	ACCESSING THE IMAGE DATA

	Error Returns
	BAD_XXX ERRORS

	Operating System Issues
	Image Display Functions and Examples
	IMAGE DISPLAY UNDER WINDOWS (INCLUDES WINDOWS€NT, WINDOWS€95 AND WINDOWS€3.1)
	IMAGE DISPLAY UNDER DOS
	IMAGE DISPLAY UNDER X€WINDOWS
	IMAGE DISPLAY UNDER MACOS

	Sample Applications
	A SIMPLE TMG PROCESSING EXAMPLE
	TEST PATTERN GENERATION
	SOFTWARE JPEG DECOMPRESSION AND DISPLAY
	SOFTWARE JPEG COMPRESSION
	CONVERTING A 24 BIT COLOUR IMAGE TO A PALETTED IMAGE
	DISPLAYING COLOUR AND GRAYSCALE IMAGES SIMULTANEOUSLY TO A PALETTED DISPLAY
	LOOK UP TABLE EXAMPLES - USING TMG LUT FUNCTIONS
	CHROMA KEYING

	Function List
	GENERAL PURPOSE FUNCTIONS
	PIXEL FORMAT CONVERSION FUNCTIONS (AND RELATED)
	IMAGE READING AND WRITING FUNCTIONS
	COLOURMAP/PALETTE RELATED FUNCTIONS
	JPEG RELATED FUNCTIONS
	CHROMA KEYING AND RELATED FUNCTIONS
	LOOK UP TABLE (LUT) FUNCTIONS
	TEXT / TIMESTAMP DRAWING FUNCTIONS
	GENERIC DISPLAY FUNCTIONS
	IMAGE PROCESSING FUNCTIONS
	BAYER PROCESSING FUNCTIONS
	SPECIAL PROCESSING FUNCTIONS
	WAVELET RELATED FUNCTIONS

	TMG_BAY_RGB24_to_RGGB32
	USAGE
	ARGUMENTS

	TMG_BAY_RGGB32_map_to_Y8, �TMG_BAY_RGGB32_map_to_RGB24
	USAGE
	ARGUMENTS

	TMG_BAY_RGGB32_to_BGRX32, �TMG_BAY_RGGB32_to_RGB16
	USAGE
	ARGUMENTS

	TMG_CK_calibrate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_chroma_key
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_create
	USAGE
	ARGUMENTS

	TMG_CK_destroy
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_destroy_UV_to_hue_LUT
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_generate_UV_to_hue_LUT
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_get_component
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_get_parameter
	USAGE
	ARGUMENTS

	TMG_CK_get_YUV_values, �TMG_CK_get_YUV_values_RGB
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_set_parameter
	USAGE
	ARGUMENTS

	TMG_cmap_copy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_generate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_get_occurrences
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_get_RGB_colour
	USAGE
	ARGUMENTS

	TMG_cmap_find_closest_colour
	USAGE
	ARGUMENTS

	TMG_cmap_is_grayscale
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_colour
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_RGB_colour
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_type
	USAGE
	ARGUMENTS

	TMG_display_box_fill [DOS]
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_clear [X Windows, DOS]
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_display_cmap [DOS]
	USAGE
	ARGUMENTS

	TMG_display_cmap_install [X Windows, DOS]
	BUGS / NOTES
	SEE ALSO

	TMG_display_create
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_direct_w31 [Windows 3.1]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_draw_text [DOS]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_hWnd [Windows]
	USAGE
	ARGUMENTS

	TMG_display_get_paint_hDC [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_ROI
	USAGE
	ARGUMENTS

	TMG_display_image
	USAGE
	ARGUMENTS
	DESCRIPTION
	DOS
	WINDOWS
	X WINDOWS
	MacOS

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_init
	USAGE
	ARGUMENTS
	WINDOWS
	DOS
	X WINDOWS
	MacOS

	RETURNS
	EXAMPLES
	WINDOWS
	DOS
	X WINDOWS
	MacOS

	BUGS / NOTES
	SEE ALSO

	TMG_display_print_DIB [Windows]
	USAGE
	ARGUMENTS

	TMG_display_set_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_font [DOS]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_hWnd [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_mask [MAC]
	USAGE
	ARGUMENTS

	TMG_display_set_paint_hDC [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_ROI
	USAGE
	ARGUMENTS
	MODE PARAMETER LIST

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_Xid [X Windows]
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_draw_get_ptr
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_draw_text
	USAGE
	ARGUMENTS

	TMG_draw_timestamp
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_calc_total_strips
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_check
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_generate
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_load
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_save
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_convert
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	SIMPLE PIXEL FORMAT CONVERSION
	CONVERSION TO YUV 4:2:2
	CONVERSION FROM YUV 4:2:2 TO RGB16 - WITHOUT A LUT
	CONVERSION FROM YUV 4:2:2 TO RGB16 - USING A LUT
	CONVERSION FROM YUV 4:2:2 TO PALETTED
	CONVERSION FROM PALETTED
	CONVERSION FROM GRAYSCALE TO PALETTED - USING A LUT
	CONVERSION FROM RGB24 TO PALETTED
	CONVERSION TO DIB

	BUGS / NOTES
	SEE ALSO

	TMG_image_copy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_create
	USAGE
	ARGUMENTS

	TMG_image_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_find_file_format
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_free_data
	USAGE
	ARGUMENTS

	TMG_image_get_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_get_infilename, �TMG_image_get_outfilename
	USAGE
	ARGUMENTS

	TMG_image_get_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_get_ptr
	USAGE
	ARGUMENTS

	TMG_image_is_colour
	USAGE
	ARGUMENTS

	TMG_image_malloc_a_strip
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_move
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_read
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_infilename, �TMG_image_set_outfilename
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_ptr
	USAGE
	ARGUMENTS

	TMG_image_write
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_IP_crop
	USAGE
	ARGUMENTS

	TMG_IP_extract_region
	USAGE
	ARGUMENTS

	TMG_IP_filter_3x3
	USAGE
	ARGUMENTS

	TMG_IP_generate_averages
	TMG_IP_histogram_clear
	USAGE
	ARGUMENTS

	TMG_IP_histogram_filter
	USAGE
	ARGUMENTS

	TMG_IP_histogram_generate
	USAGE
	ARGUMENTS

	TMG_IP_histogram_match
	TMG_IP_image_insert
	USAGE
	ARGUMENTS

	TMG_IP_mirror
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_IP_mirror_image
	USAGE
	ARGUMENTS

	TMG_IP_pixel_rep
	USAGE
	ARGUMENTS

	TMG_IP_rotate_image
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_IP_subsample
	USAGE
	ARGUMENTS

	TMG_IP_threshold_grayscale
	USAGE
	ARGUMENTS

	TMG_JPEG_buffer_read
	TMG_JPEG_buffer_write
	USAGE
	ARGUMENTS

	TMG_JPEG_build_image
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_compress
	USAGE
	ARGUMENTS

	TMG_JPEG_compress_image_to_image
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_decompress
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_decompress_image_to_image
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_close
	USAGE
	ARGUMENTS

	TMG_JPEG_file_open
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_read
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_write
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_image_create
	USAGE
	ARGUMENTS

	TMG_JPEG_sequence_build
	TMG_JPEG_sequence_calc_length
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_sequence_extract_frame
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_sequence_set_start_frame
	USAGE
	ARGUMENTS

	TMG_JPEG_set_image
	USAGE
	ARGUMENTS

	TMG_JPEG_set_Quality_factor
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_set_Quantization_factor
	USAGE
	ARGUMENTS

	TMG_LUT_apply
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_create
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_generate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_get_ptr
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_SPL_2fields_to_frame
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_SPL_Data32_to_Y8
	USAGE
	ARGUMENTS

	TMG_SPL_field_to_frame
	USAGE
	ARGUMENTS

	TMG_SPL_HSI_to_RGB_pseudo_colour
	USAGE
	ARGUMENTS

	TMG_SPL_YUV422_to_RGB_pseudo_colour
	USAGE
	ARGUMENTS

	TMG_SPL_XXXX32_to_Y8
	USAGE
	ARGUMENTS

	TMG_WVLT_buffer_read
	USAGE
	ARGUMENTS

	TMG_WVLT_buffer_write
	USAGE
	ARGUMENTS

	TMG_WVLT_compress
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_WVLT_decompress
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_WVLT_file_read
	USAGE
	ARGUMENTS

	TMG_WVLT_file_write
	USAGE
	ARGUMENTS

	TMG_WVLT_image_create
	USAGE
	ARGUMENTS

	TMG_WVLT_image_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_WVLT_set_Quality_factor
	USAGE
	ARGUMENTS

	TMG_WVLT_set_subbands
	USAGE
	ARGUMENTS

