
v1.1

LFG Video Capture Card

Programmer’s Manual

Active Silicon Limited

Disclaimer

While every precaution has been taken in the preparation of this manual, Active Silicon Ltd assumes no
responsibility for errors or omissions. Active Silicon Ltd reserves the right to change the specification of the
product described within this manual and the manual itself at any time without notice and without obligation of
Active Silicon Ltd to notify any person of such revisions or changes.

Copyright Notice

Copyright  2000-2001 Active Silicon Ltd. All rights reserved. This document may not in whole or in part, be
reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or translated into
any language or computer language without the prior written consent of Active Silicon Ltd.

Trademarks

“Microsoft”, “MS” and “MS-DOS” are registered trademarks, and “Windows” and “Win32” are trademarks of
Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners.

Printed in the United Kingdom.

Version 1.1 January 2002

Part Number: LFG-LIB-MAN

Active Silicon Limited, Brunel Science Park, Kingston Lane, Uxbridge, Middx, UB8 3PQ, United Kingdom.

Tel: +44 1895 234254
Fax: +44 1895 230131
Web: www.activesilicon.co.uk
Email: support.lfg@activesilicon.co.uk

http://www.activesilicon.co.uk/
mailto:support@activesilicon.co.uk

Revision History

Version Date Comments

1.0 8th January 2001 First release.

1.1 30th January 2002 Minor updates.

LFG Programmer’s Manual v1.1 i

Table of Contents

Introduction... 3

Concepts.. 4

Function Overview.. 6

Example Application... 8

LFG_AcquisitionStart ... 10

LFG_AcquisitionStop ... 11

LFG_Close.. 12

LFG_EventHandlerInstall ... 13

LFG_Open .. 16

LFG_SetAndGet ... 17

LFG_TMG_ImageCreate.. 23

LFG_TMG_ImageDestroy.. 24

LFG_TMG_ImageSet ... 25

LFG Programmer’s Manual v1.1 ii

LFG Programmer’s Manual v1.1 Introduction 3

Introduction
This manual describes Active Silicon’s LFG software library which provides a simple interface to the LFG capture
card. This library is supported on several operating systems, including Windows 98, NT, 2000, ME, MS-DOS and
Linux. The low level driver layer is provided by Active Silicon’s CDA driver architecture, also included in the
SDK.

The LFG capture card uses the Conexant Fusion 878A video/audio acquisition chip (derived from the Brooktree
Bt878). For those interested, the datasheet for this chip can be found in the LFG release media in the documentation
area. However the LFG library has been designed to hide the physical details of the hardware and provide the user
with a simple logical interface.

The library and driver have both been written specifically for professional applications in image acquisition, image
processing, scientific imaging and machine vision, and are not based on the standard Fusion 878A drivers.

Digital video data is transferred into either host memory or directly to the display without any software overhead.
The hardware handles all DMA scatter/gather and page table information automatically. The pixel format may also
be converted in hardware to a number of standard RGB formats, including colour space conversion from YUV 4:2:2
to RGB colour space if required.

The functionality of the library consists of four main areas:

1. Card initialisation via an open call (and a close call to terminate access).

2. Card configuration for the desired video and acquisition mode. This includes video standard, image size, region
of interest, field mode, temporal sampling and many other option settings.

3. Functions to start and stop acquisition. Notification of image acquisition may be interrupt driven (via a callback
function) or polled.

Image display and image file format support is provided by the TMG imaging library supplied with the SDK. This
imaging library is supplied on a licence basis for use with the LFG capture card only and therefore may only be used
in a PC containing a LFG capture card. Also contained in the TMG imaging library are optimised JPEG
compression routines capable of compressing full resolution video in real-time.

Multiple boards in a single PC are supported, limited only by the number of PCI slots.

LFG Programmer’s Manual v1.1 Concepts 4

Concepts

OVERVIEW

The LFG library consists of an application level programming API and a kernel mode driver. The library API is
designed to be as simple as possible, yet able to provide a rich set of configuration and acquisition modes often
required in complex machine vision applications.

The architecture of the library is based on Active Silicon’s “Logical-Physical Architecture” (LPA). The LPA
architecture provides the user with the ability to set a series of logical settings, such as image size, video standard
etc, and then call a single function to configure the hardware appropriately. This provides total abstraction from the
details of the physical implementation (i.e. all the low level registers).

Internally the library takes these logical settings and maps them to their physical register level equivalents, but
importantly it will only write any registers that have changed and then only write them via a single driver call. It
does this by caching all writes and then sending them all to the low level driver. This has the benefit of being highly
fast and efficient during on the fly reconfiguration of video modes. The LPA architecture also provides a method
for by-passing the logical settings and writing directly to the physical hardware, which can sometimes for useful for
advanced users.

For status information, the library does the reverse, that is, it takes physical status information from the capture card
and maps these to simple logical settings.

OPEN AND CLOSE

The LFG_Open command is used to open the LFG library and device driver and establish communication with the
capture card. LFG_Close is used to terminate access and free up internal library and driver resources.

CONFIGURATION AND STATUS OF THE CAPTURE CARD

Configuration of the capture card is done by setting various structure members to their required setting and then
making the single call to LFG_SetAndGet which configures the capture card and returns status information about the
card.

EVENT DRIVEN ACQUISITION

For most applications, event driven acquisition will be the preferred solution. In this mode a user installed callback
function is called each time a new image is acquired or on a number of other events, such as trigger input. The “new
image” event can be one of several events, based on video fields or frames, temporal subsampling or one particular
image being acquired in a circular acquisition buffer of programmable length. Generally two image buffers would
be used (these are automatically created) allowing acquisition into one whilst processing and/or displaying from the
other.

Polled acquisition may also be used if required - in this mode the user’s application requests the status of
acquisition, effectively waiting for a new image to be written into host memory.

IMAGE DISPLAY, FILE FORMAT SUPPORT AND JPEG COMPRESSION

Image display, image file load and save, and optimised JPEG compression are supported by the TMG library
provided with the SDK. Please refer to the TMG Library Programmer’s Manual for further details and the example
applications in the SDK.

LFG Programmer’s Manual v1.1 Concepts 5

SOURCE FILES PROVIDED WITH THE SDK

The following source files are provided with the SDK as an aid to development of custom applications:

lfg_mode.c This file, which is compiled into the library, shows how the top level video modes map onto the
low level logical settings. This code provides a useful reference for how to generate
customised video modes.

lfg_tmg.c This file, which is not compiled into the library, shows how the LFG library may be interfaced
to a typical image processing or display library. This interface file would normally be
compiled in with application source code to provide a simple API from the application to an
image processing and display library. The LFG capture card includes a single runtime licence
for the TMG library and this interface file allows it to be used in a simple but effective manner.

lfg_tmg.cpp A C++ version of the above designed for use with MFC applications.

The LFG include files are as follows:

lfg_api.h This is the main application include file and contains the LFG structure (which contains all the
logical settings available for the card). It is the only LFG include file that is required by the
user to use the LFG functions. It includes other necessary include files listed below.

lfg_os.h Definitions for various operating system dependencies including types.

lfg_err.h Status, error returns codes and macros.

lfg_hw.h Hardware register definitions and related.

lfg_pro.h Function prototypes and external definitions.

Also provided are the include files for the CDA driver layer and TMG imaging library.

Different operating systems are supported using one of the compiler pre-processor directives:

• _LFG_WIN32 for Windows 98, NT, 2000 and ME;

• _LFG_LINUX for Linux; and

• _CDA_DOS32 for 32 bit MS-DOS support

See “lfg_os.h” for the latest supported operating systems.

LFG Programmer’s Manual v1.1 Function Overview 6

Function Overview
This section gives a brief overview of each function available to the user. All functions are described in detail
further on in this manual.

INITIALIZATION FUNCTIONS

LFG_Open Establishes communication with the LFG capture card and configures the board into a
default state. A specific PCI slot number may be selected or alternatively the function
will scan for first available device. A error handler may also be passed into the
function which will be called on any error condition and supplied with the error code
and library function name in which the error occurred.

LFG_Close This function closes a previously opened LFG capture card and frees all internal
associated resources.

SETUP FUNCTIONS

LFG_EventHandlerInstall Installs a callback function that is called when certain events occur such as when a
new image has been acquired.

LFG_SetAndGet “Sets” the capture card with configuration information and “gets” status information
from the hardware.

ACQUISITION FUNCTIONS

LFG_AcquisitionStart Starts acquisition. (DMA based with zero software overhead.)

LFG_AcquisitionStop Stops acquisition.

IMAGING LIBRARY INTERFACE FUNCTIONS - SOURCE CODE PROVIDED

LFG_TMG_ImageCreate Creates a TMG image that references the LFG’s host video buffer.

LFG_TMG_ImageDestroy Destroys a previously allocated TMG image.

LFG_TMG_ImageSet Configures the TMG image’s parameters to match the image format of the LFG
capture card.

ERROR HANDLING AND RELATED FUNCTIONS

_LFG_Assert A useful assert function that can be used during software development. Defined in
“lfg_os.h”.

_LFG_DebugString Prints out a text message and a text string parameter. Useful during development.

_LFG_Debug Prints out a text message and a numerical parameter. Useful during development.

_LFG_DebugPopup Displays a popup window (under GUI based operating systems) and stops program
execution.

LFG_ErrorHandlerInstall Installs a user defined error handler. LFG_ErrHandlerDefault is the name of the
default error handler.

LFG Programmer’s Manual v1.1 Function Overview 7

Note the debug and assert macros are only implemented if _LFG_DEBUG is defined. See the separate manual
“LFG Error Handling” for further details of these functions.

LFG Programmer’s Manual v1.1 Example Application 8

Example Application
This section provides the source code for a complete application for the capture and subsequent saving to file of
video data. This example application, called “simple.c” is installed as part of the SDK along with appropriate
makefiles. Full error checking on all the return values of functions has been excluded for clarity, although the
default error handler is used so any errors will be apparent. Again for clarity, this example is a simple console
program and therefore does not provide image display. (The SDK contains other more comprehensive examples
with full source code showing image display and processing.)

/* “simple.c” - Simple console example program.
 * This program configures the card, acquires 100 video frames, and
 * then writes last acquired image as a TIFF file.
 */
#include <lfg_api.h>
#include <tmg_api.h> /* Used to save the image to a TIFF file */

static void EventHandler(ui32 hCard, ui32 dwEvent, ui32 dwIntStatus, void*
pv);

struct tMyApp /* Put everything we need into a structure */
{
 struct tLFG gsMyLFG; /* LFG device structure */
 struct tLFG *psLFG; /* Convenient pointer to our LFG */
 ui32 hCard; /* Handle to LFG PCI card */
 ui32 hSrcImage1; /* Source image 1 for DMA'ed data */
 ui32 hSrcImage2; /* Source image 2 for DMA'ed data */
 volatile i32 nImageCount; /* Count images that are DMA’ed */
};

int main()
{
 struct tMyApp sApp;
 ui32 hRGB_Image;

 printf("\nLFG: Simple Test Program");

 memset(&sApp, 0, sizeof(struct tMyApp));
 sApp.psLFG = &(sApp.gsMyLFG);
 sApp.nImageCount = 0;
 LFG_Open(&(sApp.hCard), sApp.psLFG, LFG_ErrHandlerDefault);

 sApp.psLFG->sLog.dwVideoMode = LFG_50_PAL_384x288_F1;
 LFG_SetAndGet(sApp.hCard, sApp.psLFG, LFG_WRITE);

 LFG_TMG_ImageCreate(&(sApp.hSrcImage1));
 LFG_TMG_ImageCreate(&(sApp.hSrcImage2));
 LFG_TMG_ImageSet(sApp.hCard, sApp.psLFG, sApp.hSrcImage1, 1);
 LFG_TMG_ImageSet(sApp.hCard, sApp.psLFG, sApp.hSrcImage2, 2);

 sApp.psLFG->sLog.dwEvents = LFG_EVENT_NEW_IMAGE;
 sApp.psLFG->sLog.fPolledDrivenCallback = TRUE; /* For clarity here */
 LFG_SetAndGet(sApp.hCard, sApp.psLFG, LFG_WRITE);
 LFG_EventHandlerInstall(sApp.hCard, &EventHandler, &sApp);

 LFG_AcquisitionStart(sApp.hCard);

 while (sApp.nImageCount < 100) /* Loop until finished */
 {
 /* The next line drives the event driven callback in polled mode */
 LFG_SetAndGet(sApp.hCard, sApp.psLFG, LFG_READ);

LFG Programmer’s Manual v1.1 Example Application 9

 }

 LFG_AcquisitionStop(sApp.hCard);

 /* Now convert from YUV 4:2:2 to RGB24 and save as a TIFF file */
 hRGB_Image = TMG_image_create();
 TMG_image_convert(sApp.hSrcImage1, hRGB_Image, TMG_RGB24, 0, TMG_RUN);
 TMG_image_set_outfilename(hRGB_Image, "out.tif");
 TMG_image_write(hRGB_Image, TMG_NULL, TMG_TIFF, TMG_RUN);
 TMG_image_destroy(hRGB_Image);

 LFG_TMG_ImageDestroy(sApp.hSrcImage1);
 LFG_TMG_ImageDestroy(sApp.hSrcImage2);
 LFG_Close(sApp.hCard);

} /* End main() */

/*
 * Event handler - “dwEvent” is the logical bitwise event status.
 * This function is called each time a new image is acquired.
 * We use the default buffer size of 2 images, so we can process from one
 * image whilst we acquire into the other.
 */
static void EventHandler(ui32 hCard, ui32 dwEvent, ui32 dwIntStatus, void*
pv)
{
 struct tMyApp *psApp = (struct tMyApp*)pv;

 psApp->nImageCount++;

 if (dwEvent & LFG_EVENT_NEW_IMAGE)
 {
 /* Make sure we know which image to process from our continuous
 * (circular) live acquisition sequence of 2 images.
 */
 if (dwEvent & LFG_EVENT_END_SEQUENCE)
 {
 /* Process image 2 here */
 }
 else
 {
 /* Process image 1 here */
 }
 }
}

LFG Programmer’s Manual v1.1 LFG_AcquisitionStart 10

LFG_AcquisitionStart

USAGE

ui32 LFG_AcquisitionStart(ui32 hCard)

ARGUMENTS

hCard Handle to a LFG capture card.

DESCRIPTION

This function starts video acquisition which in turn will cause the hardware DMA engine to start transferring
video data into memory.

The function LFG_Open must be called before this function in order to initialise and configure the capture
card ready for acquisition. Typically LFG_SetAndGet would also be used to configure the card from its
default to the desired acquisition mode. (The default acquisition mode is 50Hz colour PAL video at
resolution of 384 x 288 at 25 frames per second.)

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code will start acquisition. See also the complete example in the “Example Application”
section.

LFG_AcquisitionStart(hCard);

BUGS / NOTES

None.

SEE ALSO

LFG_EventHandlerInstall, LFG_AcquisitionStop.

LFG Programmer’s Manual v1.1 LFG_AcquisitionStop 11

LFG_AcquisitionStop

USAGE

ui32 LFG_AcquisitionStop(ui32 hCard)

ARGUMENTS

hCard Handle to a LFG capture card.

DESCRIPTION

This function stops video acquisition and turns of the hardware DMA engine.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code will stop acquisition. See also the complete example in the “Example Application”
section.

LFG_AcquisitionStop(hCard);

BUGS / NOTES

None.

SEE ALSO

LFG_AcquisitionStart.

LFG Programmer’s Manual v1.1 LFG_Close 12

LFG_Close

USAGE

ui32 LFG_Close(ui32 hCard)

ARGUMENTS

hCard Handle to a LFG capture card.

DESCRIPTION

This function closes a previously opened LFG capture card and frees internal resources associated with the
card.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code terminates access to the capture card. See also the complete example in the “Example
Application” section.

if ((dwErrCode = LFG_Close(hCard)) != LFG_OK)
{
 printf(“Failed to close LFG card (Error Code = %08x)\n”, dwErrCode);
}

BUGS / NOTES

None.

SEE ALSO

LFG_Open.

LFG Programmer’s Manual v1.1 LFG_EventHandlerInstall 13

LFG_EventHandlerInstall

USAGE

ui32 LFG_EventHandlerInstall(ui32 hCard, void (*pFnHandler)(ui32, ui32, ui32, void*), void* pv)

ARGUMENTS

hCard Handle to a LFG capture card.

pFnHandler User callback function.

pv Pointer to an application specific “context” structure which will be passed to the
callback function.

DESCRIPTION

This function installs a callback function that it is called by the LFG library on any event - either hardware or
software that is setup in advance by a call to LFG_SetAndGet, using the LFG logical structure member
dwEvents.

The four parameters passed to the callback function are as follows:

hCard Handle to the LFG capture card that caused the event.

dwEvent The event that caused the handler to be called, along with other useful status information.

The events are (bitwise):

LFG_EVENT_NEW_IMAGE A new image has been acquired. With no
temporal subsampling, this event is
essentially a field or frame interrupt
depending on the acquisition mode.

LFG_EVENT_TRIGGER The trigger has been asserted. This event is
signalled immediately the trigger is detected.
A more practically useful version is listed
next.

LFG_EVENT_TRIGGER_THIS_IMAGE This event is synchronised with the
LFG_EVENT_NEW_IMAGE event to
indicate that the trigger has happened within
the last image acquisition period (i.e. the last
field or frame depending on the acquisition
mode).

LFG_EVENT_VSYNC A vertical synchronisation event has occurred
(the start of a new video field).

The status information flags are:

LFG_EVENT_END_SEQUENCE The last image acquired was the last one in
the circular image buffer of N images, where
the default for N is 2, but may be set to
anything.

dwIntStatus The actual contents of the Fusion 878A interrupt status register. This may be of use to
advanced users.

pv A void* pointer to user installed context data. Typically this would be used for an
application structure that contains the relevant information about the application and
capture card.

LFG Programmer’s Manual v1.1 LFG_EventHandlerInstall 14

Under pre-emptive multi-tasking operating systems, such as the supported Windows operating systems, the
foreground process would normally sleep (using no CPU time) or alternatively be performing other
application specific tasks.

However it is possible to simulate the callback environment without the use of hardware interrupts (which are
required for the usual callback mode of operation). This can sometimes be useful when debugging or
troubleshooting when sharing the interrupt line with other devices. (The LFG driver is designed to operate
with either shared as well as exclusively allocated interrupt lines.) To do this, the logical flag in the LFG
structure, fPolledDrivenCallback is set to TRUE and then the function LFG_SetAndGet called in a polling
loop. See the section “Example Application” for an example of how to do this.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code is an example of how to install a callback function. See also the complete example in the
“Example Application” section.

/* Install an event handler to be called each time a new image is acquired
 * and ready for processing.
 */
 sApp.psLFG->sLog.dwEvents = LFG_EVENT_NEW_IMAGE;
 LFG_SetAndGet(sApp.hCard, sApp.psLFG, LFG_WRITE);
 LFG_EventHandlerInstall(sApp.hCard, &EventHandler, &sApp);

/* Event handler
 * -------------
 */
static void EventHandler(ui32 hCard, ui32 dwEvent, ui32 dwIntStatus, void* pv)
{
 struct tLFG *psLFG = (struct tLFG*)pv;
 (void)hDevice;
 (void)dwData;

 if (dwEvent & LFG_EVENT_NEW_IMAGE)
 {
 /* Make sure we know which image to process from our continuous
 * (circular) live acquisition sequence of 2 images.
 */
 if (dwEvent & LFG_EVENT_END_SEQUENCE)
 {
 /* Process image 2 here */
 }
 else
 {
 /* Process image 1 here */
 }
 }
}

LFG Programmer’s Manual v1.1 LFG_EventHandlerInstall 15

BUGS / NOTES

None.

SEE ALSO

LFG_SetAndGet.

LFG Programmer’s Manual v1.1 LFG_Open 16

LFG_Open

USAGE

ui32 LFG_Open(ui32 *phCard, struct tLFG *psLFG, void (*pFnErrHandler)(ui32, const char*, ui32,
const char*))

ARGUMENTS

phCard The address of (pointer to) a user allocated 32 bit unsigned integer, filled in by the
LFG library, that becomes the handle used to reference the LFG capture card that has
been opened.

psLFG Pointer to a user allocated LFG structure, used to transfer information to and from the
library.

pFnErrHandler Function pointer to an error handler, called on any errors encountered whilst executing
library code. The default error handler may be used by passing in the parameter
LFG_ErrHandlerDefault (the name of the default error handler). A custom error
handler may also be used instead of the default one. See the LFG Library Error
Handling manual for further details.

DESCRIPTION

This function is used to open the capture card, that is to establish communication and provide a handle
through which the capture card may be accessed.

The pointer psLFG must point to a user allocated structure (see example below). In order to select a
particular LFG capture card (if multiple cards are used in one PC), the LFG structure member dwDeviceAddr
is set to 0 to automatically select the first available card, or else 1, 2, 3…etc is used to select a specific PCI
device number. (Note that often the physical layout of PCI slots does not follow an ascending pattern - for
example a four slot PCI motherboard may have the physical slots laid out as 2134.)

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code fragment shows the use of the open function:

int main()
{
 struct tLFG sMyLFG; /* LFG device structure */
 ui32 hCard; /* Handle to LFG PCI card */

 if (LFG_Open(&hCard, &sLFG, LFG_ErrHandlerDefault) == LFG_OK)
 {
 printf(“LFG Capture Card opened OK”);
 }
}

BUGS / NOTES

None.

SEE ALSO

LFG_Close.

LFG Programmer’s Manual v1.1 LFG_SetAndGet 17

LFG_SetAndGet

USAGE

ui32 LFG_SetAndGet(ui32 hCard, struct tLFG *psLFG, ui32 dwBitsOptions)

ARGUMENTS

hCard Handle to a LFG capture card.

psLFG Pointer to the user defined LFG structure.

dwBitsOptions A bitwise variable that accepts LFG_WRITE to set information and LFG_READ to get
information. These options may be used together by ORing them as follows:
LFG_WRITE | LFG_READ

DESCRIPTION

This function provides a method of configuring the LFG capture card and reading back status information
through the use of a single structure and single function call.

Various logical structure members may be used to set the functionality and similarly various logical members
are set by the library according to the status of the card. Hence this function “Sets” the capture card and
“Gets” status information.

The parameter dwBitsOptions determines whether the library is to set information or get status or both. This
parameter is set to the bitwise flag LFG_WRITE in order to set information and LFG_READ to get status
information. These flags may be used independently or together by ORing them:
 i.e. “LFG_WRITE | LFG_READ”.

The include file “lfg_api.h” contains the definition for the LFG structure.

The structure is composed of two sub-structures - one is a logical representation of the capture card and the
other a physical representation of all the required values. The LFG_SetAndGet function intelligently
generates the physical representation from the logical one and then only writes to the card any register values
that have changed for optimum driver efficiency. And to make things even more efficient, the appropriate
physical registers are only re-generated if a logical setting that effects that particular register is changed. This
is done by comparing the application’s LFG structure to a private internal one to determine exactly what has
changed. This has the benefit that if required, the user may set some or all of the physical registers
themselves to override or perhaps access a special mode not supported through the usual logical settings.

The logical members are accessed through the structure “sLog” and the physical registers (if so desired)
through the structure “sReg”.

For example to set increase the contrast from the default value of 128, the following code would be used:

psLFG->sLog.bContrast = 200;

The registers are not listed here but are fully documented in the Fusion 878A datasheet supplied as part of the
SDK. The register may be accessed through the LFG API by using the sReg structure - for example to set the
“A Delay” register directly:

psLFG->sReg.bAdelay = 0x20;

When setting registers directly, the capture card should first be setup with the closest configuration using the
logical settings with a call to LFG_SetAndGet and then by fine tuning the register values whilst leaving the
logical settings alone.

The LFG_SetAndGet function is also used to “drive” the callback functionality when configured for “polled”
(non-interrupt driven) mode. In order to do this the logical parameter fPolledDrivenCallback is set to TRUE
and LFG_SetAndGet polled in a loop - perhaps in a separate thread. See the application example in the
“Example Application” section.

The following table lists all logical settings and their associated values:

LFG Programmer’s Manual v1.1 LFG_SetAndGet 18

fPolledDrivenCallback Set to TRUE for polled driven callbacks. Default is FALSE.

dwEvents A bitwise OR field to determine the events that get signalled to the installed
callback function:

LFG_EVENT_NEW_IMAGE Called each time a new image is acquired.

LFG_EVENT_TRIGGER Called each time a trigger event occurs.

LFG_EVENT_TRIGGER_THIS_
IMAGE

Same as LFG_EVENT_TRIGGER but
synchronised with LFG_EVENT_NEW_IMAGE.

LFG_EVENT_VSYNC Called on each video vertical sync.

dwVideoSrc Selects one of the following video sources:

LFG_VID_SRC_CM0 Select composite/mono input 0 (default).

LFG_VID_SRC_CM1 Select composite/mono input 1.

LFG_VID_SRC_CM2 Select composite/mono input 2.

LFG_VID_SRC_CM3 Select composite/mono input 3.

LFG_VID_SRC_YC0,1,2,3 Select the S-video input (Luma on 0,1,2,3).

dwVideoMode Selects an overall video mode that automatically configures many of the other
logical settings for simplicity. The file that takes this video mode setting and
fills in the other logical settings from it, is provided as a source code example
so that additional video modes may easily be added. The file is “lfg_mode.c”
and is installed as part of the LFG SDK.

There are 64 predefined video modes covering 50 and 60Hz video, colour
(PAL/NTSC/SECAM) or monochrome, various standard image sizes and
whether to acquire fields 1, 2 or both.

For example, LFG_50_PAL_768x576_F12 means 50Hz video, colour PAL,
768 x 576 resolution, acquire both fields.

Another example would be LFG_60_MONO_320x240_F1 which means 60Hz
video monochrome at a resolution of 320 x 240 acquiring field 1 only.

Listed below is the set for colour PAL to give an idea of the options available.
(The modes are actually generated from the bitwise ORing of several sub-
options. See “lfg_api.h” for the full list, and “lfg_mode.c” for how these
modes affect the logical members in the LFG structure).

There is also a setting LFG_VMODE_USER that allows the user to setup the
options that would otherwise be automatic from dwVideoMode. For example
to scale to particular resolutions or to read out a region/area of interest.

LFG_50_PAL_768x576_F12 50Hz video, colour PAL standard, 768 x 576
resolution, both fields acquired and re-
interlaced to generate a full frame.

LFG_50_PAL_640x480_F12 As above but 640 x 480 resolution as a
scaling example.

LFG_50_PAL_768x288_F1 50Hz, colour PAL, field 1 only,
25 images/sec.

LFG_50_PAL_768x288_F2 50Hz, colour PAL, field 2 only,
25Hz images/sec.

LFG_50_PAL_768x288_F12 50Hz, colour PAL, fields 1 and 2,
50Hz images/sec.

LFG_50_PAL_384x288_F1 As above, but 384 x 288, field 1 only
(default).

LFG_50_PAL_384x288_F2 As above but field 2 only.

LFG Programmer’s Manual v1.1 LFG_SetAndGet 19

LFG_50_PAL_384x288_F12 As above but acquire both fields.

LFG_50_PAL_192x144_F1 As above, but 192 x 144, field 1 only.

LFG_50_PAL_192x144_F2 As above but field 2 only.

LFG_50_PAL_192x144_F12 As above but acquire both fields.

This next block of settings are set automatically by the previous setting, dwVideoMode, unless dwVideoMode is set
to LFG_VMODE_USER in which case this next set may be set directly.

f50Hz Set TRUE for 50Hz video and FALSE for 60Hz. Default is 50Hz.

dwVideoDecodeStd Set to one of the following:

LFG_VID_STD_NTSC NTSC-M as used in the USA and others.

LFG_VID_STD_NTSC_J NTSC as used in Japan.

LFG_VID_STD_PAL PAL-I, D, B, G, H as used in UK, Ireland, South
Africa, Western Europe, China and others (default).

LFG_VID_STD_PAL_M PAL-M as used in Brazil.

LFG_VID_STD_PAL_NC PAL as used in Argentina.

LFG_VID_STD_PAL_N PAL-N as used in Paraguay and Uruguay.

LFG_VID_STD_SECAM_4406 France, SECAM as used in France, the Middle East
and Eastern Europe.

LFG_VID_STD_SECAM_4250 SECAM but based on a sub-carrier of 4.25MHz
rather than 4.406MHz.

LFG_VID_STD_MONO Monochrome video.

nHorzStart Horizontal start of the image readout in un-scaled pixels. For full region of
interest acquisition, set to LFG_50HZ_HORZ_START for 50Hz video (default) or
LFG_60HZ_HORZ_START for 60Hz video.

nVertStart Vertical start of the image readout in un-scaled lines. For full region of interest set
to LFG_50HZ_VERT_START for 50Hz video (default) or
LFG_60HZ_VERT_START for 60 Hz video.

fsHorzScaling Set to a floating point number between 1.0 and 0.0625 (1/16) for horizontal scaling
(default 0.5).

fsVertScaling Set to a floating point number between 1.0 and 0.0625 (1/16) for vertical scaling
(default 0.5).

fVertFieldAlign Set to TRUE to re-align sequential odd and even fields in the vertical plane. Used
if 50/60 frames per second acquisition is required for sub-sampled video. (Default
TRUE).

fReInterlace Set to TRUE if the DMA engine should “re-interlace” sequential video fields
whilst transferring digitised video data across the PCI bus to result in re-
constructed full frame video in memory. (Default FALSE.)

nImageWidth Set to the desired output image width. Must tie in with the scaling factor
(fsHorzScaling) and the horizontal start of image readout (nHorzStart). (Default
384.)

nImageHeight Set to the desired output image height. Must tie in with the scaling factor
(fsVertScaling) and the vertical start of image readout (nVertStart). (Default 288.)

dwFieldsToAcquire Set to one of LFG_FIELDS_F1, LFG_FIELDS_F2 or LFG_FIELDS_BOTH to
determine whether to acquire fields 1, 2 or both. (Default Field 1 only.)

LFG Programmer’s Manual v1.1 LFG_SetAndGet 20

The following settings are independent of the Video Mode setting (dwVideoMode):

dwPixelFormat Set the desired pixel format to be one of the following:

LFG_PIXEL_FORMAT_AUTO Automatically select between Y8 or YUV422
depending on whether colour/mono video
(default).

LFG_PIXEL_FORMAT_Y8 8 bits per pixel monochrome data.

LFG_PIXEL_FORMAT_YUV422 YUV 4:2:2 interleaved YCbCr data with byte
ordering YUYV.

LFG_PIXEL_FORMAT_RGB8_D RGB 3:3:2, 8 bits per pixel, dithered.

LFG_PIXEL_FORMAT_RGB15 RGB 5:5:5, 2 bytes per pixel.

LFG_PIXEL_FORMAT_RGB15_D RGB 5:5:5, 2 bytes per pixel, dithered.

LFG_PIXEL_FORMAT_RGB16 RGB 5:6:5, 2 bytes per pixel.

LFG_PIXEL_FORMAT_RGB16_D RGB 5:6:5, 2 bytes per pixel, dithered.

LFG_PIXEL_FORMAT_RGB32 32 bit RGB data with byte ordering (on Intel
based PC) BGRX.

fColorBars When set to TRUE, switches the input to hardware generated colour bars. Default
is FALSE.

fLumaNotchOn Set to TRUE to enable the luma notch filter when acquiring colour. The notch
filter is automatically disabled when acquiring from an S-Video source. When
acquiring from a monochrome source, it should be set to FALSE (but not when a
monochrome picture is desired from a colour video source). Default is TRUE.

fRemoveGamma Set to TRUE to apply an inverse gamma function to the video. This can be useful
to remove gamma correction if unable to do so at the video source. Default is
FALSE.

fFullRange Set to TRUE to provide full dynamic range (0..255) luminance data, rather than the
usual 16..253 CCIR range. The Cb, Cr range is always 2..253 with 128
representing zero colour information. Default is FALSE.

dwCoring Coring option, set to one of the following. Coring can improve subjective image
quality by mapping luminance pixels below a set threshold to black.

Note the coring level is above black level, thus with fFullRange set FALSE (16 is
black level) a coring level of 8 is actually 24.

LFG_CORING_0 No coring (default).

LFG_CORING_8 Pixel luminance level of 8 and below mapped to black.

LFG_CORING_16 Pixel luminance level of 16 and below mapped to black.

LFG_CORING_32 Pixel luminance level of 32 and below mapped to black.

bBrightness Vary the image brightness using a number between 0 and 255 (128 represents no
change and is the default setting).

bContrast Vary the image contrast using a number between 0 and 255 (128 represents no
change and is the default setting).

bColor Vary the image colour level using a number between 0 and 255 (128 represents no
change and is the default setting).

bHueShift Only application to NTSC, this setting varies the hue. Default 128.

nNumImages The number of images in the DMA buffer. The default is 2, which allows for the
basic requirement of acquisition into one image, whilst displaying (or processing)
from the other.

dwTriggerMode Set the mode for the trigger input. Note that when using level sensitive interrupts,
the interrupt handler will be continually called whilst the interrupt signal is at the
interrupting level (i.e. high or low depending on the setting).

LFG Programmer’s Manual v1.1 LFG_SetAndGet 21

LFG_TRIGGER_RISING_EDGE A trigger event is signalled on a TTL rising edge.

LFG_TRIGGER_FALLING_EDGE A trigger event is signalled on a TTL falling
edge (default).

LFG_TRIGGER_LEVEL_HIGH A trigger event is signalled on a TTL high.

LFG_TRIGGER_LEVEL_LOW A trigger event is signalled on a TTL low.

dwEndian This setting allows byte swapping and 16 bit word swapping of 32 bit data in
hardware.

LFG_ENDIAN_NO_SWAP No swapping of the data (default).

LFG_ENDIAN_BYTE_SWAP Swap bytes 0 and 1, and 2 and 3.

LFG_ENDIAN_WORD_SWAP Swap the lower and upper 16 bit words.

LFG_ENDIAN_BW_SWAP Perform both a byte and word swap.

fLed1_On A boolean setting to turn on or off the LED viewable through the end panel
(default on - TRUE).

fI2cExtEnable Enable the I2C bus to drive externally (default disabled - FALSE).

dwIo0, dwIo1, dwIo2 Configure each of the three TTL I/O lines to one of the following:

LFG_IO_INPUT As a TTL input (default for all I/Os).

LFG_IO_OUT_HI As an output and drive to a TTL high level.

LFG_IO_OUT_LO As an output and drive to a TTL low level.

nOneEveryNImages Temporal sub-sampling: Set to a number, N, which will result in an image being
acquired every N images (default 1). Useful for time-lapsed photography /
recording.

Status information read back from the card and represented by the following logical members in the LFG structure:

fVideoPresent A boolean that indicates video is present on the selected input.

fHLock A boolean that indicates whether the acquisition phase locked loop has locked to
the selected video source. Note that this status flag may not work for certain types
of VCR (video cassette recorder) or other video devices that have varying line
lengths. However acquisition will still function correctly.

fIo0_InHi,
fIo1_InHi,
fIo2_InHi

Boolean flags representing the status of the TTL I/O lines.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code sets up the card to use 50Hz PAL video at a resolution of 384 x 288 acquiring both fields
at real time rates - hence at 50 fields per second.

psLFG->sLog.dwVideoMode = LFG_50_PAL_384x288_F12;
LFG_SetAndGet(hCard, psLFG, LFG_WRITE);

The following code switches on the hardware colour bars generator (perhaps in order to test an application
when a real video source is not available):

psLFG->sLog.fColorBars = TRUE;
LFG_SetAndGet(hCard, psLFG, LFG_WRITE);

LFG Programmer’s Manual v1.1 LFG_SetAndGet 22

The following code sets a custom video mode for the readout of a region of interest that is 300 pixels by 300
lines without any scaling:

psLFG->sLog.dwVideoMode = LFG_VMODE_USER;
psLFG->sLog.f50Hz = TRUE;
psLFG->sLog.dwVideoDecodeStd = LFG_VID_STD_PAL;
psLFG->sLog.nHorzStart = LFG_50HZ_HORZ_START+100;
psLFG->sLog.nVertStart = LFG_50HZ_VERT_START+50;
psLFG->sLog.fsHorzScaling = 1.0;
psLFG->sLog.fsVertScaling = 1.0;
psLFG->sLog.fVertFieldAlign = FALSE;
psLFG->sLog.fReInterlace = TRUE;
psLFG->sLog.nImageWidth = 300;
psLFG->sLog.nImageHeight = 300;
psLFG->sLog.dwFieldsToAcquire = LFG_FIELDS_BOTH;
LFG_SetAndGet(hCard, psLFG, LFG_WRITE);

The following code sets a custom video mode for the readout of a region of interest that is 120 pixels by 120
lines with a 60% scaling reduction:

psLFG->sLog.dwVideoMode = LFG_VMODE_USER;
psLFG->sLog.f50Hz = TRUE;
psLFG->sLog.dwVideoDecodeStd = LFG_VID_STD_PAL;
psLFG->sLog.nHorzStart = LFG_50HZ_HORZ_START+100;
psLFG->sLog.nVertStart = LFG_50HZ_VERT_START+50;
psLFG->sLog.fsHorzScaling = 0.4;

/* Note: As soon as we want less than half vertical size, we
 * set fReInterlace FALSE and scale from one field (that already
 * has a factor of 2 reduction), hence to achieve 0.4 we set
 * 0.8 for fsVertScaling.
 */
psLFG->sLog.fsVertScaling = 0.8;
psLFG->sLog.fReInterlace = FALSE;

psLFG->sLog.nImageWidth = 120;
psLFG->sLog.nImageHeight = 120;
psLFG->sLog.dwFieldsToAcquire = LFG_FIELDS_F1;
psLFG->sLog.fVertFieldAlign = TRUE;
LFG_SetAndGet(hCard, psLFG, LFG_WRITE);

See also the application source for the demonstration programs installed as part of the LFG SDK for
comprehensive examples.

BUGS / NOTES

None.

SEE ALSO

-

LFG Programmer’s Manual v1.1 LFG_TMG_ImageCreate 23

LFG_TMG_ImageCreate

USAGE

ui32 LFG_TMG_ImageCreate(ui32 *phImage)

ARGUMENTS

phImage Address of a 32 bit unsigned integer to be used as a handle to a TMG image.

DESCRIPTION

This function creates a TMG image and returns a handle to reference the image in the 32 bit unsigned integer
referenced by phImage.

The description for the function LFG_TMG_ImageSet explains in detail exactly how the TMG images are
used by the LFG library.

By using a TMG image, all the standard functions in the TMG library are available such as image file save,
load, optimised JPEG compression and decompression, and image display. See the TMG Imaging Library
Manual, provided with the LFG SDK for further details. See also the example applications installed as part
of the LFG SDK. Note the TMG library may only be used in a PC with a LFG capture card fitted.
Standalone use requires a separate licence - please contact Active Silicon Ltd for details in required.

This function is not compiled into the LFG library, but provided as source code (“lfg_tmg.c” or
“lfg_tmg.cpp”) so that the TMG library may be used by simply compiling the file lfg_tmg.c with the
application. This allows the flexibility of using the TMG library if required but also shows a methodology
for interfacing to typical image processing and display libraries, should it be required to interface to another
library.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code creates two images and then later on, before program exit, destroys them.

ui32 hImage1;
ui32 hImage2;

LFG_TMG_ImageCreate(&hImage1));
LFG_TMG_ImageCreate(&hImage2));

.

. /* Main program … */

.

LFG_TMG_ImageDestroy(hImage1);
LFG_TMG_ImageDestroy(hImage2);

BUGS / NOTES

None.

SEE ALSO

LFG_TMG_ImageDestroy, LFG_TMG_ImageSet.

LFG Programmer’s Manual v1.1 LFG_TMG_ImageDestroy 24

LFG_TMG_ImageDestroy

USAGE

ui32 LFG_TMG_ImageDestroy(ui32 hImage)

ARGUMENTS

hImage Handle to a TMG image.

DESCRIPTION

This function destroys a previously created TMG image.

This function is not compiled into the LFG library, but provided with source code (“lfg_tmg.c”) so that the
TMG library may be used by simply compiling the file “lfg_tmg.c” with the application (or “lfg_tmg.cpp”
for MFC applications). This allows the flexibility of using the TMG library if required but also shows a
methodology for interfacing to typical image processing and display libraries, should it be required to
interface to another library.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

See the example code for LFG_TMG_ImageCreate.

BUGS / NOTES

None.

SEE ALSO

LFG_TMG_ImageCreate, LFG_TMG_ImageDestroy.

LFG Programmer’s Manual v1.1 LFG_TMG_ImageSet 25

LFG_TMG_ImageSet

USAGE

ui32 LFG_TMG_ImageSet(ui32 hCard, struct tLFG *psLFG, ui32 hImage, i32 nImageNum)

ARGUMENTS

hCard Handle to a LFG capture card.

psLFG Pointer to the user defined LFG structure.

hImage Handle to a TMG image.

nImageNum A number that represents the Nth image created. This number is used by the function to
associate the TMG image, hImage, to the correct image in the DMA image buffer.

DESCRIPTION

This function configures the TMG image, referenced by hImage, to reference the Nth image in the sequence
of N DMA image buffers, where N is the parameter nImageNum. The number of image buffers created is
determined by the logical LFG member nNumImages, set up prior to a call to LFG_SetAndGet. See below
for an example of 4 image buffers setup along with four TMG images that reference each of these buffers.

As well as associating a TMG image with an image buffer, the function also sets up various other parameters
required to define the image, such as image width, height and pixel format.

This function is not compiled into the LFG library, but provided with source code so that the TMG library
may be used by simply compiling the file “lfg_tmg.c” with the application (or “lfg_tmg.cpp” with MFC
applications). This allows the flexibility of using the TMG library if required but also shows a methodology
for interfacing to typical image processing and display libraries, should it be required to interface to another
library.

RETURNS

LFG_OK on success or an error code as defined in the programmer’s manual “LFG Error Handling”.

EXAMPLES

The following code sets up the capture card to acquire full frame 50Hz video at a rate of 25 frames per
second (50 fields per second) into a circular image buffer of 4 frames (8 fields). The images are re-interlaced
during DMA to the target (host) memory to provide full frame, 768 x 576 pixel resolution images. hImage1
references the first image, hImage2 the second and so on. The capture card will continually acquire in real
time sequential frames to image 1, 2, 3 and 4 and then back to 1 again.

psLFG->sLog.dwVideoMode = LFG_50_PAL_768x576_F12;
psLFG->sLog.nNumImages = 4;
LFG_SetAndGet(hCard, psLFG, LFG_WRITE);

LFG_TMG_ImageSet(hCard, psLFG, hImage1, 1);
LFG_TMG_ImageSet(hCard, psLFG, hImage2, 2);
LFG_TMG_ImageSet(hCard, psLFG, hImage2, 3);
LFG_TMG_ImageSet(hCard, psLFG, hImage2, 4);

LFG_AcquisitionStart(hCard);

BUGS / NOTES

None.

LFG Programmer’s Manual v1.1 LFG_TMG_ImageSet 26

SEE ALSO

LFG_SetAndGet, LFG_TMG_ImageCreate, LFG_TMG_ImageDestroy.

	Introduction	3
	Introduction
	Concepts
	OVERVIEW
	OPEN AND CLOSE
	CONFIGURATION AND STATUS OF THE CAPTURE CARD
	EVENT DRIVEN ACQUISITION
	IMAGE DISPLAY, FILE FORMAT SUPPORT AND JPEG COMPRESSION
	SOURCE FILES PROVIDED WITH THE SDK

	Function Overview
	INITIALIZATION FUNCTIONS
	SETUP FUNCTIONS
	ACQUISITION FUNCTIONS
	IMAGING LIBRARY INTERFACE FUNCTIONS - SOURCE CODE PROVIDED
	ERROR HANDLING AND RELATED FUNCTIONS

	Example Application
	LFG_AcquisitionStart
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	LFG_AcquisitionStop
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	LFG_Close
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	LFG_EventHandlerInstall
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	LFG_Open
	USAGE
	ARGUMENTS

	LFG_SetAndGet
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	LFG_TMG_ImageCreate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	LFG_TMG_ImageDestroy
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	LFG_TMG_ImageSet
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

