
Chapter 1: Image/VGA-400 Hardware Architecture

JPEG

Software
Development Kit
User’s Guide

MuTech Corporation
85 Rangeway Road
Billerica, MA 01862
USA

For additional assistance, call MuTech’s Technical Support Group at:

Telephone: 978-663-2400
Fax: 978-663-3444
Internet: support@mutech.com
Website: www.mutech.com

Image/VGA-400, IV-400, M-Vision 500, MV-500, M-Vision 1000, MV-1000
are trademarks of MuTech Corporation

© Copyright 1999, MuTech Corporation
All rights reserved
Revision 2.0: 4/30/99

JPEG Software Development Kit User’s Guide Version 2.0

Table of Contents - 1

1 Introduction

1.1 Overview . 1.1
1.2 Baseline Compression and Decompression. 1.2
1.3 Lossless Compression and Decompression 1.3

2 Using MuTech JPEG SDK

2.1 DOS 16 Bit Library . 2.1
2.2 Windows 16 Bit DLL . 2.2
2.3 Windows 32 Bit DLL . 2.3

3 Function References

3.1 Application Level Group . 3.1
3.1.1 JPEG_InquireSDKVersion . 3.2
3.1.2 JPEG_InquireCodeStreamSize . 3.3
3.1.3 JPEG_File2File_Compress . 3.4
3.1.4 JPEG_File2File_Decompress . 3.6
3.1.5 JPEG_File2Memory_Compress . 3.8
3.1.6 JPEG_Memory2File_Decompress . 3.11
3.1.7 JPEG_Memory2File_Compress . 3.13
3.1.8 JPEG_File2Memory_Decompress . 3.18
3.1.9 JPEG_Memory2Memory_Compress . 3.21
3.1.10 JPEG_Memory2Memory_Decompress. 3.27

3.2 MuTech Products Support Group . 3.30
3.2.1 IV-4XX Board Support Group . 3.30

3.2.1.1 IV4JPEGLoad .. 3.30
3.2.1.2 IV4JPEGSave... 3.34
3.2.1.3 IV4InquireJPEGVals.. 3.37

3.3 Miscllaneous Utility Group . 3.39
3.3.1 MTRGB24BitToYCbCr422 . 3.39
3.3.2 MTYCbCr422ToRGB24Bit . 3.40
3.3.3 MTRGB32BitToYCbCr422 . 3.41
3.3.4 MTYCbCr422ToRGB32Bit . 3.42
3.3.5 MTInquireJPGVals . 3.43

Table of Contents

Version 2.0 JPEG Software Development Kit User’s Guide

2 - Table of Contents

3.3.6 MTInquireJPGInMemoryVals . 3.44
3.3.7 MTInquireBMPVals . 3.46
3.3.8 MTInquireTGAVals . 3.47
3.3.9 MTInquireTIFFVals . 3.48

A Glossary

B Overview of the JPEG Still Picture Compression Algorithm

B.1 Introduction - B.1
B.2 Algorithm Requirements and Selection Process - - - - - - - - - - - - - - B.2
B.3 Basic DCT Block Diagram - B.3
B.4 Source Images and Data Interleaving - - - - - - - - - - - - - - - - - - - B.6
B.5 Sequential Build-up and Baseline System - - - - - - - - - - - - - - - - - B.7
B.6 Progressive Build-up - B.7
B.7 Hierarchical Encoding - B.8
B.8 Standardization Schedule - B.9

C Prediction

Introduction - 1.1

JPEG Software Development Kit User’s Guide Version 2.0

1 Introduction

1.1 Overview

MuTech’s JPEG image compression Software Development Kit (SDK) is
based on an international standard format: the Joint Photographic Experts
Group (JPEG) or ISO DIS 10918-1. The SDK provides a highly optimized
DCT algorithm and high speed software that compresses gray scale or color
images to ratios as high as 100:1. OEMs and System integrators can quickly
and easily incorporate MuTech JPEG SDK functions into their applications(for
Windows or DOS). Some of these functions work independently, and some of
them work in conjunction with MuTech’s frame grabber products and corre-
sponding SDKs.

The JPEG SDK includes libraries, DLLs, sample source code and build/make
files. The key features of the MuTech JPEG SDK are:

� High level functions with sample code to speed up application devel-
opment

� Selectable input/output file formats

� Quality factors 1<<Qf<<255

� Lossy(DCT based) or Lossless compression modes

� The code stream generated can be stored either in file or in memory
buffer

MuTech JPEG SDK provides a choice of lossy or lossless compression modes.

� The Lossy(also known as Baseline) compression allows a selectable
amount of loss of information during compression by adjusting the
Quality Factor (QF) parameter.

� The lossless mode compresses the image without introducing any dis-
tortion. The decompressed image will be exactly the same as the orig-
inal.

1.2 - Introduction

Version 2.0 JPEG Software Development Kit User’s Guide

1.2 Baseline Compression and Decompres-
sion

The Baseline compression/decompression is based on Discrete Cosine Trans-
form (DCT), Quantization, and Huffman coding. Block diagrams of these pro-
cesses are shown in Figure 1-1 and Figure 1-2.

Compression To achieve the best compression results, JPEG handles colors as separate com-
ponents such as RGB and YCbCr (YUV). For Baseline, MuTech JPEG always
converts RGB images into YCbCr color space for compression. The decom-
pressed image can be converted back from YCbCr to RGB, if so desired, by
the application.

After the pre-process of color space conversion (if necessary), the image will
go through the following procedures (as shown in Figure 1-1) for compression:

1 An image is divided up into 8x8 blocks. Each block is transformed into
the frequency domain using Forward DCT. The results of the transfor-
mation is a set of 64 DCT coefficients. One of these values at location
(0,0) is referred to as the DC coefficient and the rest as the AC coeffi-
cients.

2 Each of these DCT coefficients is quantized using one of the corre-
sponding values from the quantization table. This quantization table
can be scaled to generate different amount of compression. The scaling
process is controlled by the Quality Factor provided by the user.

3 Huffman code tables are then used to encode the entropy of the quan-
tized DCT coefficients. These Huffman code tables are pre-defined in-
side the MuTech JPEG SDK.

Figure 1-1: Baseline Encoding Diagram

Decompression Reversing the compression process, an image is restored from the compressed
code stream as follows (Figure 1-2):

1 The compressed code stream is decoded into DCT coefficients by us-
ing the same Huffman code tables used in the compression process.

Introduction - 1.3

JPEG Software Development Kit User’s Guide Version 2.0

2 The DCT coefficients are dequantized using the same quantization ta-
bles as in the compression process.

3 The group of 64 dequantized DCT coefficients are transformed back
into 8x8 blocks of pixels using Inverse DCT.

Figure 1-2: Baseline Decoding Diagram

After the decompression, the result will be converted into an RGB color image
if the user desires. The restored image will not be exactly the same as the orig-
inal. The degree of distortion<N>is inversely proportional to the Quality Fac-
tor spesified during compression. The higher the Quality Factor, the less the
image distortion. Please refer to Appendix B for details on Baseline compres-
sion and decompression.

1.3 Lossless Compression and Decompres-
sion

Lossless Codec (Compression and Decompression) is less complicated than
Baseline Codec. The image is not divided into blocks, and there is no DCT
transformation, quantization, or color space conversion. JPEG uses the original
image’s color components for compression and decompression.

The compression is based on neighborhood prediction and Huffman coding.
Block diagrams for lossless compression and decompression are shown in Fig-
ure 1-4 and Figure 1-5 respectively.

Compression Lossless Codec uses a predictive coding technique based on the “Differential
Pulse Code Modulation” (DPCM) model. The prediction error from the DPCM
is encoded by the same Huffman coding used by Baseline codec. The follow-
ing are the steps for Lossless compression (Figure 1-4.) :

1 A predictor combines the reconstructed values of up to three neighbor-
hood samples at positions a, b and c to form a prediction of the sample
at position x as shown in Figure 1-3.

1.4 - Introduction

Version 2.0 JPEG Software Development Kit User’s Guide

2 This prediction is subtracted from the actual value of the sample at the
position x generating the difference.

3 The difference is then coded by Huffman coding.

Figure 1-3: Three-sample Prediction Neighborhood

Figure 1-4: Lossless Encoding Diagram

Decompression The procedure below restores an image from a compressed code stream(Figure
1-5):

1 The Huffman code is decoded for the prediction difference of each
pixel.

2 The prediction value for each pixel is calculated. This is based on the
same predictor used in the encoding process and the same reconstruct-
ed neighborhood samples, for example a, b and c as shown in Figure
1-3.

3 To restore the original image, the prediction value of each pixel (gen-
erated from Step 2) is added to the prediction difference of each pixel
(decoded from Step 1).

Introduction - 1.5

JPEG Software Development Kit User’s Guide Version 2.0

Figure 1-5: Lossless Decoding Diagram

After the decompression, the restored image will be exactly the same as the
original. Refer to Appendix C for definitions of different predictors used by
JPEG lossless compression.

1.6 - Introduction

Version 2.0 JPEG Software Development Kit User’s Guide

Using MuTech JPEG SDK - 2.1

JPEG Software Development Kit User’s Guide Version 2.0

2 Using MuTech JPEG SDK
The MuTech JPEG SDK is provided separately for different platforms, such as
DOS, WIN16 and WIN32. SDK’s for other platforms may also be available.
Call MuTech Corporation for information.

The MuTech JPEG SDK adds JPEG compression/decompression capabilities
to other MuTech products. It currently supports the IV-4XX product line to-
gether with the IV-4XX SDK. Support for other MuTech products will become
available in the future. Generally, the MuTech JPEG SDK is a software pack-
age which can be used either alone or with any other MuTech SDKs.

The following sections describe the contents and the organizations of the JPEG
SDK for different platforms.

2.1 DOS 16 Bit Library

The DOS version of the MuTech JPEG SDK provides a group of 16 bit librar-
ies, MTJPEG.LIB, FIOLIB.LIB, and IV4JPEG.LIB, which are based on Mi-
crosoft Visual C/C++ 1.5x and work only with the MSC compiler. Only large
memory mode libraries are provided.

Once installed, the following files can be found in the sub-directories:

X:\MTJPEG\INC\
MTJPEG.H
PORTABLE.H
STD_DEF.H

X:\MTJPEG\LIB\
MTJPEG.LIB
FIOLIB.LIB
IV4JPEG.LIB

X:\MTJPEG\DOC\README.DOS

X:\MTJPEG\SAMPLES\JPEG\DOS\

2.2 - Using MuTech JPEG SDK

Version 2.0 JPEG Software Development Kit User’s Guide

DF2FCMP.C
DF2FCMP.MAK
DF2FDEC.C
DF2FDEC.MAK

The following files are also included in the MuTech JPEG SDK, but are ex-
pected to be used with the IV-4XX SDK for DOS:

X:\MTJPEG\SAMPLES\IV4JPEG\DOS\
DJPEG.C
DJPEG.MAK
COURF.FON

Please refer to README.DOS for information on how to build and run the
samples.

2.2 Windows 16 Bit DLL

The WIN16 version of the MuTech JPEG SDK provides a 16 bit Dynamic
Link Library (DLL), MTJPEG16.DLL, and an import library,
MTJPEG16.LIB, which are based on Microsoft Visual C/C++ 1.5x and which
work under both Windows 3.1x and Windows 9X. Since MTJPEG16.DLL is
a standard Windows DLL, is should work with other compilers as well.

Once installed, the following files can be found in the sub-directories:

X:\MTJPEG\INC\
MTJPEG.H
PORTABLE.H
STD_DEF.H

X:\MTJPEG\LIB\
MTJPEG16.LIB
MTJPEG16.DLL

X:\MTJPEG\DOC\README.W16

X:\MTJPEG\SAMPLES\JPEG\WIN16\
WMEMORY.C
WMEMORY.H
WMEMORY.RC
WMEMORY.DEF
WMEMORY.MAK

The following files are also included in the MuTech JPEG SDK, but are ex-
pected to be used with the IV-4XX SDK for Windows 3.1x:

X:\MTJPEG\SAMPLES\IV4JPEG\WIN31\
WJPEG.C
WJPEG.H
WJPEG.RC

Using MuTech JPEG SDK - 2.3

JPEG Software Development Kit User’s Guide Version 2.0

WJPEG.DEF
WJPEG.MAK

Please refer to README.W16 for information on how to build and run the
samples.

2.3 Windows 32 Bit DLL

The WIN32 version of the MuTech JPEG SDK provides a 32 bit Dynamic
Link Library (DLL), MTJPEG32.DLL, and an import library,
MTJPEG32.LIB, which are based on Microsoft Visual C/C++ 2.x or later and
chich work under both Windows 9X and Windows NT. Since
MTJPEG32.DLL is a standard 32 bit Windows DLL, it should work with other
compilers as well.

Once installed, the following files can be found in the sub-directories:

X:\MTJPEG\INC\
MTJPEG.H
PORTABLE.H
STD_DEF.H

X:\MTJPEG\LIB\
MTJPEG32.LIB
MTJPEG32.DLL

X:\MTJPEG\DOC\README.W32

X:\MTJPEG\SAMPLES\JPEG\WIN32\
CF2FCMP.C
CF2FCMP.MAK
CF2FCMP.DSW
CF2FCMP.DSP
CF2FDEC.C
CF2FDEC.MAK
CF2FDEC.DSW
CF2FDEC.DSP

X:\MTJPEG\SAMPLES\JPEG\WIN32\
CMEMORY.C
CMEMORY.H
CMEMORY.RC
CMEMORY.DEF
CMEMORY.MAK
CMEMORY.DSW
CMEMORY.DSP

The following files are also included in the MuTech JPEG SDK, but are ex-
pected to be used with the IV-4XX SDK for Windows 9X or for Windows NT:

2.4 - Using MuTech JPEG SDK

Version 2.0 JPEG Software Development Kit User’s Guide

X:\MTJPEG\SAMPLES\IV4JPEG\WIN95\
CJPEG.C
CJPEG.H
CJPEG.RC
CJPEG.DEF
CJPEG.MAK
CJPEG.DSW
CJPEG.DSP

X:\MTJPEG\SAMPLES\IV4JPEG\WINNT\
NJPEG.C
NJPEG.H
NJPEG.RC
NJPEG.DEF
NJPEG.MAK
NJPEG.DSW
NJPEG.DSP

Please refer to README.W32 for information on how to build and run the
samples.

Function References - 3.1

JPEG Software Development Kit User’ Guide Version 2.0

3 Function References
The APIs documented in this chapter have identical interfaces for all platforms
supported.

The functions in MuTech JPEG SDK have been divided into several groups, the
Application Level Group, the MuTech Product Support Group and the Miscellanous
Utility Group. Each will be discussed in this chapter.

Application Level Group provides easy-to-use interfaces for most of the
applications to compress/decompress images between files and the system memory.
This group of functions can be used in any applications that may or may not relate to
MuTech products.

MuTech Product Support Group includes functions which must be used with other
MuTech products. Generally, these routines will perform compression or
decompression between Video Buffer and disk files. Currently, only IV-4XX
product line are supported. Supports for other product line may be available in the
future.

Miscellaneous Utility Group provides miscellaneous supports to applications, such
as RGB and YCbCr color space conversion or file information inquire functions.

There is a lower level function group called the Developer Level Group in the JPEG
SDK. This group is the base for all higher level function groups, e.g., the
Application Level and the MuTech Product Support groups. To use the routines in
the Developer Level Group requires using complicated call back schemes. This
group of functions are not domcumented here.

3.1 Application Level Group

This function group uses the following naming conventions.

3.2 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

Compression JPEG_Source2Destination_Compress

� Source - can be File or Memory in which the input image data are
located. The data format can be 8 bit Black/White, 16 bit YCrCb
(YUYV), or 24 bit RGB (in some cases).

� Destination - can be File or Memory in which the output code stream
will be stored in JPEG format.

Decompression JPEG_Source2Destination_Decompress

� Source - can be File or Memory in which the input code stream is
located in JPEG format.

� Destination - can be File or Memory in which the output iamge data
will be stored. The data format can be 8 bit Black/White, 16 bit
YCbCr (YUYV), or 24 bit RGB (in some cases).

Parameter used to
return data to caller

To distingush any parameter which can be used to return data/information to the
caller, we put a small left arrow in front of the parameter. This format is shown
below.

Õ OutputParameter

3.1.1 JPEG_InquireSDKVersion

SYNOPSIS #include “mtjpeg.h”
UWORD MTPROCALL JPEG_InquireSDKVersion(void);

DESCRIPTION Returns the current JPEG SDK version.

PARAMETERS None

RETURN VALUE A 16 bit hex value, the higher 8 bits represent the major version number and
the lower 8 bits represent the minor version number.

SIDE EFFECT None.

EXAMPLE UWORD SDKVersion;

// inquires SDK version
SDKVersion = JPEG_InquireSDKVersion();
// reports SDK version
printf(“SDK Version is %x.%x, SDKVersion >> 8,

SDKVersion & 0x00ff);

Function References - 3.3

JPEG Software Development Kit User’ Guide Version 2.0

3.1.2 JPEG_InquireCodeStreamSize

SYNOPSIS #include “mtjpeg.h”
ULONG MTPROCALL JPEG_InquireCodeStreamSize();

DESCRIPTION Returns the total number of bytes of the code stream processed by the last
compression/decompression function call.

PARAMETERS None

RETURN VALUE A 32 bit integer vaule which is the number of bytes of the code stream
processed by the last compression/decompression function call.

COMMENTS This function can be called following any one of the compression/
decompression function calls. It will return the code stream size processed by
the last compression/decompression function. Or, if none of the
compression/decompress functions has been called, this function should
return a value 0. The code stream size can be used to calculate the
compression ratio.

SIDE EFFECT None.

EXAMPLE ULONG CodeSize;

// called a compression function
JPEG_File2File_Compress(...);
// get code stream size
CodeSize = JPEG_InquireCodeStreamSize();
// now, CodeSize contains the number of bytes
// of the compressed file.

// another example

// called a decompression function
JPEG_File2File_Decompress(...);
// get code stream size
CodeSize = JPEG_InquireCodeStreamSize();
// now, CodeSize contains the number of bytes
// from the input file that has been decoded.

3.4 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

3.1.3 JPEG_File2File_Compress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_File2File_Compress(

char FAR *InFile,
CompressParameter cmpPara,
char FAR *OutFile);

DESCRIPTION Compresses an image file in BMP, TGA, or TIF format into a JPG file.

PARAMETERS InFile
A pointer to a string that specifies the input file name which may contain a
path and must have an extension of BMP, TGA, or TIF.

cmpPara
Specifies the compression parameters in the CompressParameter structure defined
below:

typedef struct COMPRESSPARAMETER {
BYTE CompressMethod;
BYTE QualityFactor;
BYTE CompressedDataFormat;
BYTE FAR *Comments;
UWORD CommentLength;

} CompressParamter;

The member of the structure are explained below:

� CompressMethod

Specifies the compression method which can be one of the following
pre-defined macros:

JPEG_LOSSY
Uses the JPEG Baseline Compression.

JPEG_LOSSLESS
Uses the JPEG Lossless Compression.

� QualityFactor

Specifies a Quality Factor, which ranges from 1 to 255, when
JPEG_LOSSY is used.

When JPEG_LOSSLESS is used. it selects one of the predictors, to be used
in compression. The valid value is from 1 to 7.

� CompressedDataFormat

This entry is reseved and must be filled with the following pre-defined
macro:

JPEG_AS_SOURCE
See comments for details.

Function References - 3.5

JPEG Software Development Kit User’ Guide Version 2.0

� Comments

Pointer to a byte buffer that contains application related information, such
as comment, time stamp, etc. The contents in the buffer will be copied to
the compressed file using a JPEG Comment Marker. The user can retrieve
this information by calling either the MTInquireJPGVals() or one of the
decompression functions that decompresses from a JPG file.

� CommentLength

Specifies the length of the information in bytes. If the contents is longer
than CommentLength, the extra part will be dropped. The user must
ensure that the CommentLength is not longer than the size of the
Comments buffer.

OutFile
A pointer to a string that specifies the output file name which may contain a path and
must have an extension of JPG.

RETURN VALUE OK

The function completed successfully.

PARA_ERROR

One of the parameter is invalid.

COMMENTS For lossy (baseline) compression, the Quality Factor is used to control the
compressed image quality. The higher the Quality Factor, the better the compressed
image quality and the lower the compression ratio, and vice versa. To adjust the
compression ratio and compressed image quality, MuTech recommends using 128
as the start value. Usually this value will generate acceptable results for both
compression ratio and compressed image quality. The user may experiment with
different settings and choose the best one.

For lossless compression, a Predictor Number is used. For details about the
definition of the Predictor Number, refer to Appendix C.

This function supports three type of input files, which are BMP, TGA and TIF.
Moreover, only 8 bit Black/White and 24 bit RGB image can be compressed except
for TIFF file, in which case, the YCbCr422 format is also supported. The output file
must be JPG file.

Compression Data Format will be determined internally by the source data file and
the Compress Method. If the input data is 8 bit Black/White, the Compressed Data
Format will be 8 bit Black/White. If the input Data is 24 bit RGB, for lossless
compression the Compressed Data format will be 24 bit RGB, for baseline
compression the input data will be converted to YCbCr422, and the Compressed
Data Format will be YCbCr422. For YCbCr422 input data format, only lossy
compression is supported and it will be compressed in the YCbCr422 format.

SIDE EFFECT None.

SEE ALSO JPEG_File2File_Decompress(), MTInquireJPGVals()

3.6 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

EXAMPLE CompressParameter cPara;

// fill out the input parameter structure
cPara.CompressMethod = JPEG_LOSSY;
cPara.QulityFactor = 128;
cPara.CompressedDataFormat = JPEG_AS_SOURCE;
cPara.Comments = NULL;
cPara.CommentLength = 0;

// compress
if (JPEG_File2File_Compress(“test.bmp”, cPara,

“test.jpg”) != OK)
{

// error occurs
}
.
.
// decompress
if (JPEG_File2File_Decompress(“test.jpg”,

DATA_AS_COMPRESSED,
“test.tga”,
NULL, NULL) != OK)

{
// error occurs

}

3.1.4 JPEG_File2File_Decompress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_File2File_Decompress(

char FAR *InFile,
BYTE PixelFormat,
char FAR *OutFile,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Decompresses an image file in JPG format into an image file of BMP, TGA or TIF
format.

PARAMETERS InFile
A pointer to a string that specifies the input file name which may contain a
path and must have an extension of JPG.

PixelFormat
This parameter must be filled with one of the pre-defined macros:

DATA_AS_COMPRESSED
Used for most cases, see comments for details.

DATA_16bit_YCbCr422

Function References - 3.7

JPEG Software Development Kit User’ Guide Version 2.0

This is an exception that may be used only when the compression
was lossy and the OutFile has an extension of TIF. See comments
for details.

OutFile
A pointer to a string that specifies the output file name which may contain a
path and must have an extension of BMP, TGA or TIF.

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by MTInquireJPGVals () function.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE OK

The function completed successfully.

PARA_ERROR

One of the parameter is invalid.

COMMENTS In most cases, the DATA_AS_COMPRESSED is used for PixelFormat. The
Decompressed Data Format will be determined by how the data was
compressed in the InFile . If the Compressed Data Format is 8 bit
Black/White, the Decompressed Data Format will be 8 bit Black/White. If the
Compressed Data Format is 24 bit RGB, the Decompressed Data Format will

3.8 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

be 24 bit RGB (for lossless). Or, for the Compressed Data Format of
YCbCr422, the Decompressed Data Format will be converted to RGB (for
lossy), except if the OutFile is TIF and if the compression was lossy, then the
output format can be the YCbCr422 format, which must be specified by using
the pre-defined macro DATA_16bit_YCbCr.

In General, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call MTInquireJPGVals ()
function to find out the information about the comment field, then allocate the
buffer of the right size and retrieve the comment field during the
decompression function call. The second way is to blindly allocate a buffer
which is large enough to hold the maximum anticipated size of the comment
field, then calls this function to get the information needed.

SIDE EFFECT None.

SEE ALSO JPEG_File2File_Compress(), MTInquireJPGVals()

EXAMPLE See sample for JPEG_File2File_Compress().

3.1.5 JPEG_File2Memory_Compress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_File2Memory_Compress(

char FAR *InFile,
CompressParameter cmpPara,
BYTE HUGE *jpegBuffer,
ULONG FAR *bufferLength);

DESCRIPTION Compresses an image file in BMP, TGA, or TIF format into a memory buffer in
JPG file format.

PARAMETERS InFile
A pointer to a string that specifies the input file name which may contain a
path and must have an extension of BMP, TGA, or TIF.

cmpPara
Specifies the compression parameters in the CompressParameter structure
defined below:

typedef struct COMPRESSPARAMETER {
BYTE CompressMethod;
BYTE QualityFactor;
BYTE CompressedDataFormat;
BYTE FAR *Comments;
UWORD CommentLength;

} CompressParamter;

The member of the structure are explained below:

Function References - 3.9

JPEG Software Development Kit User’ Guide Version 2.0

� CompressMethod

Specifies the compression method which can be one of the following
pre-defined macros:

JPEG_LOSSY
Uses the JPEG Baseline Compression.

JPEG_LOSSLESS
Uses the JPEG Lossless Compression.

� QualityFactor

Specifies a Quality Factor, which ranges from 1 to 255, when
JPEG_LOSSY is used.

When JPEG_LOSSLESS is used. it selects one of the predictors, to be used
in compression. The valid value is from 1 to 7.

� CompressedDataFormat

This entry is reseved and must be filled with the pre- defined macro:

JPEG_AS_SOURCE
See comments for details.

� Comments

Pointer to a byte buffer that contains application related information, such
as comment, time stamp, etc. The contents in the buffer will be copied to
the compressed jpegBuffer using a JPEG Comment Marker. The user can
retrieve this information by calling either the
MTInquireJPGInMemoryVals () or one of the decompression functions
that decompresses from a JPG memory buffer.

� CommentLength

Specifies the length of the information in bytes. If the contents is longer
than CommentLength, the extra part will be dropped. The user must
ensure that the CommentLength is not longer than the size of the
Comments buffer.

Õ jpegBuffer
A pointer to a buffer of bytes which will be used to store the compressed code
stream in JPG format.

bufferLength
A ULONG variable that specifies the length of the buffer. The requirement of
the buffer length depends on the compression ratio which is, in turn,
depending on the Quality Factor parameter. It is the caller’s responsibility to
allocate enough space to accommodating the code stream. A rule of thumb is
to allocate a buffer the same size of the original image.

RETURN VALUE OK

The function completed successfully.

3.10 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

PARA_ERROR

One of the parameters is invalid.

COMMENTS This is functionally identical to JPEG_File2File_Compress(). The only difference
is that this function stores the compressed code stream into a memory buffer instead
of a disk file. The codes generated by these two functions are identical. Please refer
to JPEG_File2File_Compress() for more comments.

SIDE EFFECT None.

SEE ALSO JPEG_File2File_Compress()
JPEG_Memory2File_Decompress()
MTInquireJPGInMemoryVals()

EXAMPLE CompressParameter cPara;
BYTE HUGE *buffer;
UWORD dx, dy, bp;
ULONG length;

// fill out the input parameter structure
cPara.CompressMethod = JPEG_LOSSY;
cPara.QulityFactor = 128;
cPara.CompressedDataFormat = JPEG_AS_SOURCE;
cPara.Comments = NULL;
cPara.CommentLength = 0;

// assume the compression ratio is greater than 1:1
// the following buffer length is considered most
// conservative that assume nothing is compressed
MTInquireBMPVals(“test.bmp”, &dx, &dy, &bp);
bp = bp / 8; // bytes per pixel
length = (ULONG)dx * (ULONG)dy * (ULONG)bp;

// allocate buffer
buffer = (BYTE HUGE *)MTMALLOC(length);
// compress
if (JPEG_File2Memory_Compress(“test.bmp”,

cPara,
buffer,
&length) != OK)

{
// error occurs

}
.
.
// Now, the length contains the actual size of
// the code stream in bytes.
// decompress
if (JPEG_Memory2File_Decompress(buffer,

 length,
 DATA_AS_COMPRESSED,

 “test.tga”,
 NULL, NULL) != OK)

Function References - 3.11

JPEG Software Development Kit User’ Guide Version 2.0

{
// error occurs

}

// release buffer
MTFREE(buffer);

3.1.6 JPEG_Memory2File_Decompress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_Memory2File_Decompress(

BYTE HUGE *jpegBuffer,
ULONG bufferLength,
BYTE PixelFormat,
char FAR *OutFile,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Decompresses a JPG format memory buffer into a BMP, TGA or TIF file.

PARAMETERS jpegBuffer
A pointer to a BYTE buffer that holds the compressed code stream in JPG
format.

bufferLength
Specifies the length of the buffer. The bufferLength defines the byte number
of code in the buffer. The bufferLength usually has a value returned from
previous call to JPEG_File2Memory_Compress() function.

PixelFormat
This parameter must be filled with one of the pre-defined macros:

DATA_AS_COMPRESSED
Used for most cases, see comments for details.

DATA_16bit_YCbCr422
This is an exception that may be used only when the compression
was lossy and the OutFile has an extension of TIF. See comments
for details.

OutFile
A pointer to a string that specifies the output file name which may contain a
path and must have an extension of BMP, TGA or TIF.

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to

3.12 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by MTInquireJPGInMemoryVals () function.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE OK

The function completes successfully.

PARA_ERROR

One of the parameter is invalid.

COMMENTS This function is functionally identical to JPEG_File2File_Decompress().
The only difference is that this function reads the compressed code stream
from a memory buffer instead of from a disk file. The decompressed image
files generated by these two functions are identical, if they have been
compressed by the same controlling parameters. Please refer to
JPEG_File2File_Deompress() for detailed comments.

In General, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call
MTInquireJPGInMemoryVals () function to find out the information about
the comment field, then allocate the buffer of the right size and retrieve the
comment field during the decompression function call. The second way is to
blindly allocate a buffer which is large enough to hold the maximum
anticipated size of the comment field, then calls this function to get the
information needed.

SIDE EFFECT None.

SEE ALSO JPEG_File2Memory_Compress(),

Function References - 3.13

JPEG Software Development Kit User’ Guide Version 2.0

JPEG_File2File_Decompress(),
MTInquireJPGInMemoryVals()

EXAMPLE See sample for JPEG_File2Memory_Compress().

3.1.7 JPEG_Memory2File_Compress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_Memory2File_Compress(

DataFrame dataFrame,
ROI region,
CompressParameter cmpPara,
BYTE FAR *OutFile);

DESCRIPTION Compresses an image from a pre-defined Data Frame in system memory into
a JPG file.

PARAMETERS dataFrame
Specifies an image in system memory as below:

typedef struct DATAFRAME {
BYTE HUGE *buffer;
UWORD dx;
UWORD dy;
BYTE UpDownFlip;
BYTE PixelFormat;
BYTE Reserved;

} DataFrame;

The members of the structure are explained below:

� buffer

Point to a byte buffer that contains the image data. The image size and
format are specified by the other members of this structure. The buffer
length must be calculated as:

if (PixelFormat == DATA_8bit_BW) bp = 1;
else if (PixelFormat == DATA_16bit_YCbCr422 ||

PixelFormat == DATA_16bit_YONLY)
bp = 2;

length = dx * dy * bp;
� dx

Specifies the number of pixels per line in the Data Frame.

� dy

Specifies the number of lines in the Data Frame.

� UpDownFlip

3.14 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

This flag specifies the direction of compressing, inverse vertically if set to
1.

� PixelFormat

Specifies the pixel format for the Data Frame. Only the following formats
are supported:

DATA_8bit_BW
8 bit per pixel Black/White format.

DATA_16bit_YCbCr422
16 bit per pixel YCbCr422 format.

DATA_16bit_YONLY
16 bit per pixel YCbCr422 format. But only the Y component is
relavent in this case, the Cb and Cr component are treated as
dummies.

region
Specifies a Region Of Interest by the ROI structure:

typedef struct ROI {
UWORD sx;
UWORD sy;
UWORD dx;
UWORD dy;

} ROI;

The members of the structure are explained below:

� sx, sy

Specify, in term of pixels, the offset of the upper left corner of the region in
a Data Frame.

� dx, dy

Specify, in term of pixels and lines, the width and height of the region in a
Data Frame.

Note, a region must be assoicated with a Data Frame in order to be completely
defined. Only the image in the region will be compressed. To compress the
entire Data Frame, define the region equal to the frame.

cmpPara
Specifies the compression parameters in the CompressParameter structure
defined below:

typedef struct COMPRESSPARAMETER {
BYTE CompressMethod;
BYTE QualityFactor;
BYTE CompressedDataFormat;
BYTE FAR *Comments;
UWORD CommentLength;
} CompressParamter;

Function References - 3.15

JPEG Software Development Kit User’ Guide Version 2.0

The member of the structure are explained below:

� CompressMethod

Specifies the compression method which can be one of the following
pre-defined macros:

JPEG_LOSSY
Uses the JPEG Baseline Compression.

JPEG_LOSSLESS
Uses the JPEG Lossless Compression.

� QualityFactor

Specifies a Quality Factor, which ranges from 1 to 255, when
JPEG_LOSSY is used.

When JPEG_LOSSLESS is used. it selects one of the predictors, to be used
in compression. The valid value is from 1 to 7. For details about predictor,
refer to Appendix C.

� CompressedDataFormat

Specifies the Compressed Data Format with one of the following
pre-defined macros:

JPEG_8bit_BW
Specifies that the Compressed Data Format will be 8 bit per pixel
Black/White format regardless what the Pixel Format is selected
in the Data Frame. If the Pixel Format in the Data Frame is
DATA_16bit_YCbCr or DATA_16bit_YONLY, the image data
will be converted to DATA_8bit_BW before compression.

JPEG_16bit_YCbCr422
Specifies that the Compressed Data Format will be 16 bit per pixel
YCbCr422 format. This parameter is valid only when the input
data format is DATA_16bit_YCbCr422.

JPEG_AS_SOURCE
The Compressed Data Format will be determined by input data,
i.e., Pixel Format in the Data Frame. When the Pixel Format is
DATA_8bit_BW, the Compressed Data Format will be
JPEG_8bit_BW. When the Pixel Format is
DATA_16bit_YCbCr422 or DATA_16bit_YONLY, the
Compressed Data Format will be JPEG_16bit_YCbCr422.

� Comments

Pointer to a byte buffer that contains application related information, such
as comment, time stamp, etc. The contents in the buffer will be copied to
the compressed file using a JPEG Comment Marker. The user can retrieve
this information by calling either the MTInquireJPGVals () or one of the
decompression functions that decompresses from a JPG file.

� CommentLength

3.16 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

Specifies the length of the information in bytes. If the contents is longer
than CommentLength, the extra part will be dropped. The user must
ensure that the CommentLength is not longer than the size of the
Comments buffer.

OutFile
A pointer to a string that specifies the output file name which may contain a
path and must have an extension of JPG.

RETURN VALUE OK

The function completed successfully.

PARA_ERROR

One of the parameters is invalid.

COMMENTS The Data Frame structure must be filled out accordingly before passed to this
function. The image data is stored in the frame buffer one line adjacent to
another without gaps. The length of a line in bytes depends on the
PixelFormat. 8 bit Black/White format takes 1 byte per pixel, 16 bit
YCbCr422 format takes 2 bytes per pixel. The total length of a line is the
number of pixels per line (dx) times the number of bytes per pixel.

If the user wants to compress an image stored in RGB color format, the image data
must be converted to YCbCr422 format by using the MTRGB24BitToYCbCr422
function provided in the Miscllanous Utility Group before passing it to this function.

If only part of the image stored in the Data Frame is to be compressed, use the
region to define the ROI.

The UpDownFlip flag is used to control if the first line to be compressed is from the
top or bottom of the ROI. This is useful when the user need to invert the image while
it is compressed. See the example code for MTRGB24BitToYCbCr422 () function
for how to use this flag.

For lossy (baseline) compression, the Quality Factor is used to control the
compressed image quality. The higher the Quality Factor, the better the compressed
image quality and the lower the compression ratio, and vice versa. To adjust the
compression ratio and compressed image quality, MuTech recommends using 128
as the start value. Usually this value will generate acceptable results for both
compression ratio and compressed image quality. The user may experiment with
different settings and choose the best one.

For lossless compression, a Predictor Number is used. For details about the
definition of the Predictor Number, refer to Appendix C.

SIDE EFFECT None.

SEE ALSO JPEG_File2Memory_Decompress(),
MTInquireJPGVals(),
MTRGB24BitToYCbCr422()

EXAMPLE CompressParameter cPara;
DataFrame dFrame;

Function References - 3.17

JPEG Software Development Kit User’ Guide Version 2.0

ROI roi;
BYTE monoInfo, bpp;

// fill out the input data structure

// the following code segment is equivalent to
// dFrame.PixelFormat = DATA_AS_COMPRESSED
MTInquireJPGVals(“test.jpg”,

&dFrame.dx,
&dFrame.dy,
&colorInfo,
NULL, NULL);

if (monoInfo == 0)
{

dFrame.PixelFormat = DATA_16bit_YCbCr422;
bpp = 2;

}
else
{

dFrame.PixelFormat = DATA_8bit_BW;
bpp = 1;

}
// allocate memory
dFrame.buffer = (BYTE HUGE *)MTMALLOC((ULONG)dFrame.dx

* (ULONG)dFrame.dy
* (ULONG)bpp
);

dFrame.UpDownFlip = 0;

// fill out the region of interest structure
// here, the ROI is the same as the Data Frame
roi.sx = 0;
roi.sy = 0;
roi.dx = dFrame.dx;
roi.dy = dFrame.dy;

// decompress
if (JPEG_File2Memory_Decompress(“test.jpg”,

 dFrame,
 roi, NULL, NULL) != OK)

{
// error occurs

}
.
.
// the decompressed data can be processed here
// fill out the input parameter structure
cPara.CompressMethod = JPEG_LOSSY;
cPara.QulityFactor = 128;
cPara.CompressedDataFormat = JPEG_AS_SOURCE;
cPara.Comments = NULL;
cPara.cLength = 0;

// compress

3.18 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

if (JPEG_Memory2File_Compress(dFrame,
roi,
cPara,
“newtest.jpg”) != OK)

{
// error occurs

}
MTFREE(dFrame.buffer);

3.1.8 JPEG_File2Memory_Decompress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_File2Memory_Decompress(

BYTE FAR *InFile,
DataFrame dataFrame,
ROI region,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Decompresses an image file in JPG format into a region of interest within a
Data Frame.

PARAMETERS InFile
A pointer to a string that specifies the input file name which may contain a
path and must have an extension of JPG.

dataFrame
Specifies an image in system memory as below:

typedef struct DATAFRAME {
BYTE HUGE *buffer;
UWORD dx;
UWORD dy;
BYTE UpDownFlip;
BYTE PixelFormat;
BYTE Reserved;
} DataFrame;

The members of the structure are explained below:

� buffer

Point to a byte buffer that contains the image data. The image size and
format are specified by the other members of this structure. The buffer
length must be calculated as:

if (PixelFormat == DATA_8bit_BW) bp = 1;
else if (PixelFormat == DATA_16bit_YCbCr422 ||

PixelFormat == DATA_16bit_YONLY)
bp = 2;

length = dx * dy * bp;

Function References - 3.19

JPEG Software Development Kit User’ Guide Version 2.0

� dx

Specifies the number of pixels per line in the Data Frame.

� dy

Specifies the number of lines in the Data Frame.

� UpDownFlip

This flag specifies the direction of compressing, inverse vertically if set to
1. See the example code for MTRGB24BitToYCbCr422 () function on
how to use this flag.

� PixelFormat

Specifies the pixel format for the Data Frame. Only the following formats
are supported:

DATA_8bit_BW
8 bit per pixel Black/White format.

DATA_16bit_YCbCr422
16 bit per pixel YCbCr422 format.

DATA_16bit_YONLY
16 bit per pixel YCbCr422 format. But only the Y component is
relavent in this case, the Cb and Cr component will be filled with
values of 0x80.

DATA_AS_COMPRESSED
Specifies that the Decompressed Data Format format is
determined by the Compressed Data Format in the input file.
When the Compressed Data Format is 8 bit Black/White, the
Decompressed Data Format will be DATA_8bit_BW. When the
Compressed Data Format is 16 bit YCbCr422, the Decompressed
Data Format will be DATA_16bit_YCbCr422.

region
Specifies a Region Of Interest by the ROI structure:

typedef struct ROI {
UWORD sx;
UWORD sy;
UWORD dx;
UWORD dy;

} ROI;

The members of the structure are explained below:

� sx, sy

Specify, in term of pixels, the offset of the upper left corner of the region in
a Data Frame.

� dx, dy

3.20 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

Specify, in term of pixels and lines, the width and height of the region in a
Data Frame.

Note, a region must be assoicated with a Data Frame in order to be completely
defined. The region is used to put the decompressed image into an ROI of a
larger Data Frame. To decompress the image into entire Data Frame, define
the region equal to the frame. If the ROI is smaller than the image size, only
the upper left part which is equal to region will be filled into the Data Frame.

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by calling MTInquireJPGVals () function.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE OK

The function completed successfully.

PARA_ERROR

One of the parameters is invalid.

COMMENTS The Data Frame structure, except the buffer, must be filled out accordingly
before passed to this function. The decompressed image data will be stored in
the frame buffer one line adjacent to another without gaps. The length of a

Function References - 3.21

JPEG Software Development Kit User’ Guide Version 2.0

line in bytes depends on PixelFormat. 8 bit Black/White format takes 1 byte
per pixel, 16 bit YCbCr422 format takes 2 bytes per pixel. The total length of
a line is the number of pixels per line (dx) times the number of bytes per pixel.

How to determine the PixelFormat migth be tricky because the result will
also depends on the Compressed Data Format in the input file. The easiest
way is to use DATA_AS_COMPRESSED. It will determine the
PixelFormat based on the Compressed Data Format in the input file. See
parameter description above for DATA_AS_COMPRESSED. This function
has some ability to convert data before writting to the buffer. For example,
assuming the Compressed Data Format is YCbCr422 (color image). If the
user specifies the PixelFormat as DATA_8bit_BW , the Cb and Cr
components will be dropped and the image will be packed to 8 bit
Black/White format. If the user specifies the PixelFormat as
DATA_16bit_YONLY , the Cb(U) and Cr(V) components will be replaced
with 0x80. Other cases are not supported.

If the user wants to have a color image in RGB format, the image data must be
converted by calling the MTYCbCr422ToRGB24Bit () function provided in
the Miscellanous Utility Group.

In General, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call MTInquireJPGVals ()
function to find out the information about the comment field, then allocate the
buffer of the right size and retrieve the comment field during the
decompression function call. The second way is to blindly allocate a buffer
which is large enough to hold the maximum anticipated size of the comment
field, then calls this function to get the information needed.

SIDE EFFECT None.

SEE ALSO JPEG_Memory2File_Compress(),
MTInquireJPGVals(),
MTRGB24BitYCbCr422(),
MTYCbCr422ToRGB24Bit()

EXAMPLE See sample for JPEG_Memory2File_Compress().

3.1.9 JPEG_Memory2Memory_Compress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_Memory2Memory_Compress(

DataFrame dataFrame,
ROI region,
CompressParameter cmpPara,
BYTE HUGE *jpegBuffer,
ULONG FAR *bufferLength);

DESCRIPTION Compresses an image in a pre-defined Data Frame in system memory into a
memory buffer in JPG file format.

3.22 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

PARAMETERS dataFrame
Specifies an image in system memory as below:

typedef struct DATAFRAME {
BYTE HUGE *buffer;
UWORD dx;
UWORD dy;
BYTE UpDownFlip;
BYTE PixelFormat;
BYTE Reserved;
} DataFrame;

The members of the structure are explained below:

� buffer

Point to a byte buffer that contains the image data. The image size and
format are specified by the other members of this structure. The buffer
length must be calculated as:

if (PixelFormat == DATA_8bit_BW) bp = 1;
else if (PixelFormat == DATA_16bit_YCbCr422 ||

PixelFormat == DATA_16bit_YONLY)
bp = 2;

length = dx * dy * bp;

� dx

Specifies the number of pixels per line in the Data Frame.

� dy

Specifies the number of lines in the Data Frame.

� UpDownFlip

This flag specifies the direction of compressing, inverse vertically if set to
1.

� PixelFormat

Specifies the pixel format for the Data Frame. Only the following formats
are supported:

DATA_8bit_BW
8 bit per pixel Black/White format.

DATA_16bit_YCbCr422
16 bit per pixel YCbCr422 format.

DATA_16bit_YONLY
16 bit per pixel YCbCr422 format. But only the Y component is
relavent in this case, the Cb and Cr component are treated as
dummies.

region
Specifies a Region Of Interest by the ROI structure:

Function References - 3.23

JPEG Software Development Kit User’ Guide Version 2.0

typedef struct ROI {
UWORD sx;
UWORD sy;
UWORD dx;
UWORD dy;

} ROI;

The members of the structure are explained below:

� sx, sy

Specify, in term of pixels, the offset of the upper left corner of the region in
a Data Frame.

� dx, dy

Specify, in term of pixels and lines, the width and height of the region in a
Data Frame.

Note, a region must be assoicated with a Data Frame in order to be completely
defined. Only the image in the region will be compressed. To compress the
entire Data Frame, define the region equal to the frame.

cmpPara
Specifies the compression parameters in the CompressParameter structure defined
below:

typedef struct COMPRESSPARAMETER {
BYTE CompressMethod;
BYTE QualityFactor;
BYTE CompressedDataFormat;
BYTE FAR *Comments;
UWORD CommentLength;
} CompressParamter;

The member of the structure are explained below:

� CompressMethod

Specifies the compression method which can be one of the following
pre-defined macros:

JPEG_LOSSY
Uses the JPEG Baseline Compression.

JPEG_LOSSLESS
Uses the JPEG Lossless Compression.

� QualityFactor

Specifies a Quality Factor, which ranges from 1 to 255, when
JPEG_LOSSY is used.

When JPEG_LOSSLESS is used. it selects one of the predictors, to be used
in compression. The valid value is from 1 to 7. Foe details about predictor,
refer to Appendix C.

3.24 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

� CompressedDataFormat

Specifies the Compressed Data Format with one of the following
pre-defined macros:

JPEG_8bit_BW
Specifies that the Compressed Data Format will be 8 bit per pixel
Black/White format regardless what the Pixel Format is selected
in the Data Frame. If the Pixel Format in the Data Frame is
DATA_16bit_YCbCr422 or DATA_16bit_YONLY, the image
data will be converted to DATA_8bit_BW before compression.

JPEG_16bit_YCbCr422
Specifies that the Compressed Data Format will be 16 bit per pixel
YCbCr422 format. This parameter is valid only when the input
data format is DATA_16bit_YCbCr422.

JPEG_AS_SOURCE
The Compressed Data Format will be determined by input data,
i.e., Pixel Format in the Data Frame. When the Pixel Format is
DATA_8bit_BW, the Compressed Data Format will be
JPEG_8bit_BW. When the Pixel Format is
DATA_16bit_YCbCr422 or DATA_16bit_YONLY, the
Compressed Data Format will be JPEG_16bit_YCbCr422.

� Comments

Pointer to a byte buffer that contains application related information, such
as comment, time stamp, etc. The contents in the buffer will be copied to
the compressed jpegBuffer using a JPEG Comment Marker. The user can
retrieve this information by calling either the
MTInquireJPGInMemoryVals () or one of the decompression functions
that decompresses from a JPG memory buffer.

� CommentLength

Specifies the length of the information in bytes. If the contents is longer
than CommentLength, the extra part will be dropped. The user must
ensure that the CommentLength is not longer than the size of the
Comments buffer.

Õ jpegBuffer
A pointer to a buffer of bytes which will be used to store the compressed code
stream in JPG format.

bufferLength
A ULONG variable that specifies the length of the buffer. The requirement of
the buffer length depends on the compression ratio which is, in turn,
depending on the Quality Factor parameter. It is the caller’s responsibility to
allocate enough space to accommodating the code stream. A rule of thumb is
to allocate a buffer the same size of the original image.

RETURN VALUE OK

The function completes successfully.

Function References - 3.25

JPEG Software Development Kit User’ Guide Version 2.0

PARA_ERROR

One of the parameter is invalid.

COMMENTS This function is functionally identical to JPEG_Memory2File_Compress().
The only difference is that this function stores the compressed data into a
system memory buffer instead of a disk file. The data generated by these two
functions are identical. Please refer to JPEG_Memory2File_Compress() for
comments.

SIDE EFFECT None.

SEE ALSO JPEG_Memory2Memory_Decompress(),
MTInquireJPGInMemoryVals(),
JPEG_Memory2File_Compress()

EXAMPLE CompressParameter cPara;
DataFrame dFrame;
BYTE monoInfo, bp;
BYTE HUGE *jpegBuffer;
ULONG length;

dFrame.buffer = (BYTE HUGE *)MTMALLOC((ULONG)dFrame.dx
* (ULONG)dFrame.dy
* (ULONG)monoInfo
);

dFrame.UpDownFlip = 0;

// fill the data frame with 8 bit black/white data
// from other source
dFrame.PixelFormat = DATA_8bit_BW;
.
.
// fill out the region of interest structure
roi.sx = 0;
roi.sy = 0;
roi.dx = dFrame.dx;
roi.dy = dFrame.dy;

// fill out the input parameter structure
cPara.CompressMethod = JPEG_LOSSY;
cPara.QulityFactor = 128;
cPara.CompressedDataFormat = JPEG_AS_SOURCE;
cPara.Comments = NULL;
cPara.cLength = 0;

// allocate buffer to hold compressed data
// (in JPG format)
// assume the compression ratio is greater than 1:1
// the following buffer length is considered most
// conservative that assume nothing is compressed
length = (ULONG)dFrame.dx * (ULONG)dFrame.dy;

// compress

3.26 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

if (JPEG_Memory2Memory_Compress(dFrame,
 roi,
 cPara,
 jpegBuffer,
 &length) != OK)

{
// error occurs

}
.
. // now, the length contains the actual size of
. // code stream in bytes
.
// decompress
// fill out the input data structure
MTInquireJPGInMemoryVals(jpegBuffer,

 &dFrame.dx,
 &dFrame.dy,
 &colorInfo,
 NULL, NULL);

if (monoInfo == 0)
{

dFrame.PixelFormat = DATA_16bit_YCbCr422;
bp = 2;

}
else
{

dFrame.PixelFormat = DATA_8bit_BW;
bp = 1;

}

if (JPEG_Memory2Memory_Decompress(jpegBuffer,
 length,
 roi,
 dFrame,
 NULL, NULL) != OK)

{
// error occurs

}
.
. // the decompressed data can be processed here
.
MTFREE(dFrame.buffer);
MTFREE(jpegBuffer);

Function References - 3.27

JPEG Software Development Kit User’ Guide Version 2.0

3.1.10 JPEG_Memory2Memory_Decompress

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL JPEG_Memory2Memory_Decompress(

BYTE HUGE *jpegBuffer,
ULONG bufferLength,
DataFrame dataFrame,
ROI region,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Decompresses a JPG format image stored in a memory buffer into a
pre-defined Data Frame in system memory.

PARAMETERS jpegBuffer
A pointer to a BYTE buffer that holds the compressed code stream in JPG
format.

bufferLength
Specifies the length of the buffer. The bufferLength defines the byte number
of code in the buffer. The bufferLength usually has a value returned from
previous call to JPEG_Memory2Memory_Compress() function.

dataFrame
Specifies an image in system memory as below:

typedef struct DATAFRAME {
BYTE HUGE *buffer;
UWORD dx;
UWORD dy;
BYTE UpDownFlip;
BYTE PixelFormat;
BYTE Reserved;
} DataFrame;

The members of the structure are explained below:

� buffer

Point to a byte buffer that contains the image data. The image size and
format are specified by the other members of this structure. The buffer
length must be calculated as:

if (PixelFormat == DATA_8bit_BW) bp = 1;
else if (PixelFormat == DATA_16bit_YCbCr422 ||

PixelFormat == DATA_16bit_YONLY)
bp = 2;

length = dx * dy * bp;

� dx

Specifies the number of pixels per line in the Data Frame.

3.28 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

� dy

Specifies the number of lines in the Data Frame.

� UpDownFlip

This flag specifies the direction of compressing, inverse vertically if set to
1. See the example code for MTRGB24BitYCbCr422 () function on how
to use this flag.

� PixelFormat

Specifies the pixel format for the Data Frame. Only the following formats
are supported:

DATA_8bit_BW
8 bit per pixel Black/White format.

DATA_16bit_YCbCr422
16 bit per pixel YCbCr422 format.

DATA_16bit_YONLY
16 bit per pixel YCbCr422 format. But only the Y component is
relavent in this case, the Cb and Cr component will be filled with
values of 0x80.

DATA_AS_COMPRESSED
Specifies that the Decompressed Data Format format is
determined by the Compressed Data Format in the input file.
When the Compressed Data Format is 8 bit Black/White, the
Decompressed Data Format will be DATA_8bit_BW. When the
Compressed Data Format is 16 bit YCbCr422, the Decompressed
Data Format will be DATA_16bit_YCbCr.

region
Specifies a Region Of Interest by the ROI structure:

typedef struct ROI {
UWORD sx;
UWORD sy;
UWORD dx;
UWORD dy;

} ROI;

The members of the structure are explained below:

� sx, sy

Specify, in term of pixels, the offset of the upper left corner of the region in
a Data Frame.

� dx, dy

Specify, in term of pixels and lines, the width and height of the region in a
Data Frame.

Function References - 3.29

JPEG Software Development Kit User’ Guide Version 2.0

Note, a region must be assoicated with a Data Frame in order to be completely
defined. The region is used to put the decompressed image into an ROI of a
larger Data Frame. To decompress the image into entire Data Frame, define
the region equal to the frame. If the ROI is smaller than the image size, only
the upper left part which is equal to region will be filled into the Data Frame.

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by MTInquireJPGVals () function.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE OK

The function completes successfully.

PARA_ERROR

One of the parameter is invalid.

COMMENTS This function is functionally identical to JPEG_File2Memory_Decompress().
The only difference is that this function reads the compressed data from a system
buffer instead of a disk file. The files generated by these two functions are identical.
Please refer to JPEG_File2Memory_Deompress() for comments.

3.30 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

In General, there two ways that the application can retrieve the comment field from
a compressed code stream. The first is to call MTInquireJPGInMemoryVals ()
function to find out the information about the comment field, then allocate the buffer
of the right size and retrieve the comment field during the decompression function
call. The second way is to blindly allocate a buffer which is large enough to hold the
maximum anticipated size of the comment field, then calls this function to get the
information needed.

SIDE EFFECT None.

SEE ALSO JPEG_Memory2Memory_Compress(),
MTInquireJPGInMemoryVals(),
JPEG_File2Memory_Decompress()

EXAMPLE See sample for JPEG_Memory2Memory_Compress().

3.2 MuTech Products Support Group

3.2.1 IV-4XX Board Support Group

The functions in this group must be used with IV-4XX SDK. The function
prototypes for this group can be found in IV4.H provided by IV-4XX SDK. Both
MuTech JPEG DLLs and corresponding IV-4XX SDK DLLs must be present for
these functions to be called successfully. For functions described in this sub-section,
please also refer to the document “IV-4XX Software Development Guide”.

Note For functions in this group, unless specified otherwise, all coordinates and
dimensions are in unites of pilxes and lines.

3.2.1.1 IV4JPEGLoad

SYNOPSIS #include “iv4.h”
int MTPROCALL IV4JPEGLoad(char FAR *name,

UWORD sx, UWORD sy,
UWORD dsx, UWORD dsy,
UWORD dx, UWORD dy,
UWORD flag,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Decompresses a sub-area of the image in a JPG file and loads into an ROI in a
pre-defined IV-4XX Video Frame.

Function References - 3.31

JPEG Software Development Kit User’ Guide Version 2.0

PARAMETERS name
specifies the file name. The file name can contain a path and must have an
extension of JPG.

sx, sy
specifies the start point (offset) of the sub-area relative to the upper left corner of the
image, horizontally (sx) and vertically (sy) in the named JPG file (source).

dsx, dsy
specifies the start point (offset) of the ROI, horizontally (dsx) and vertically
(dsy) in the pre-defined IV-4XX Video Frame (destination).

dx, dy
specifies the size of the sub-area. If no clipping happened, the sub- area sizes
for the source and the destination should be the same.

When sx + dx is greater than the width of the compressed image, a clipping
will occur in the source side, which produces a new dx’. When dsx + dx’ is
greater than the width of the IV-4XX Video Frame, a clipping will occur in
the destination side. The sy, dy, and dsy are working the same way on the
vertical direction.

flag
specifies how the image should be loaded. It could be one of pre- defined
macros:

IV4_Load_As_Is
The image should be loaded as is. If the image is in 8 bit format, it
will be loaded in Y only Black/White format, if the image is in
color format, it will be loaded in 16 bit YCbCr422 color image.

IV4_Load_As_BW
The image will be loaded in Y only Black/White format no matter
what the compressed image is.

If necessary, the color space conversion is applied automatically. This is
detailed in the following table.

flag Compressed Format IV-4XX On-Board
Format

IV4_Load_As_Is Black/White 8 bit B/W
(Cb=Cr=0x80)

IV4_Load_As_Is Color Color,
16 bit YCbCr422

IV4_Load_As_BW Black/White or Color 8 bit B/W
(Cb=Cr=0x80)

3.32 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by calling MTInquireJPGVals () function.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE IV4_OK

The function completed successfully.

IV4_ERROR

The board has not been initialized.

IV4_NOT_SUPPORTED

The IV-4XX SDK could not find the MuTech JPEG SDK DLL file. This error
code is for Windows (3.1x, 9x, NT) only.

IV4_PARAM_ERR

Indicates one of the following cases:

� sx > the width of the image in the file

� sy > the height of the image in the file

� dsx > the width of the Video Frame

� dsy > the height of the Video Frame

Function References - 3.33

JPEG Software Development Kit User’ Guide Version 2.0

� name does not have an extension of JPG

� invalid flag.

COMMENTS This function requires the application to define a IV-4XX Video Frame by
calling IV4SetVideoFrame() before loading the image. The parameter dsx,
dsy, and dx, dy are referenced to the Video Frame.

The application can call IV4InquireJPEGVals () to get the image size and
the data format about the compressed image and then set the IV-4XX Video
Frame accordingly.

In General, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call MTInquireJPGVals ()
function to find out the information about the comment field, then allocate the
buffer of the right size and retrieve the comment field during the
decompression function call. The second way is to blindly allocate a buffer
which is large enough to hold the maximum anticipated size of the comment
field, then calls this function to get the information needed.

SEE ALSO IV4SetVideoFrame(), IV4InquireJPEGVals()

EXAMPLE UWORD VF_dx, VF_dy, fmt;
.
.
// this example loads an image from a JPG file
// to IV-4XX board and display it.
// Assume the iV-4XX board has been opened and
// initialized successfully.

// inquire the file information
IV4InquireJPEGVals(“image.jpg”, &VF_dx, &VF_dy, &fmt,

NULL, NULL);

// set the Video Frame
IV4SetVideoFrame(IV4_Single_Image_Mode,

NULL, VF_dx, VF_dy);

// the following call will load an image from file
// to the Video Frame and display at (0, 0)
IV4GetVideoFrame(NULL, NULL, &VF_dx, &VF_dy);
IV4SetImageFrameOnVideoFrame(0, 0, VF_dx, VF_dy);
IV4SetImageWndOnScreen(0, 0);
IV4JPEGLoad(“image.jpg”, 0, 0, 0, 0,

VF_dx, VF_dy, IV4_Load_As_Is,
NULL, NULL);

3.34 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

3.2.1.2 IV4JPEGSave

SYNOPSIS #include “iv4.h”
int MTPROCALL IV4JPEGSave(char FAR *name,

UWORD sx, UWORD sy,
UWORD dx, UWORD dy,
UWORD flag, BYTE CompressMethod,
BYTE QualityFactor
BYTE FAR *Comments,
UWORD cLength);

DESCRIPTION Compresses an ROI in a pre-defined IV-4XX Video Frame and saves into a
JPG file.

PARAMETERS name
specifies the file name. The file name can contain a path and must have an
extension of JPG.

sx, sy
specifies the start point (offset) of the ROI, horizontally (sx) and vertically
(sy) in the pre-defined IV-4XX Video Frame (source).

dx, dy
specifies the size of the ROI. When sx + dx is greater than the width of
pre-defined IV-4XX Video Frame, a clipping will occur. The dx (or dx’ if
clipping happened) is the size of the compressed image. The dy is working the
same way on vertical direction.

flag
specifies how the image should be saved, it could be one of the pre-defined
macros:

IV4_Save_As_Is
The image should be saved as is. If theimage is in B/W mode, it
will be compressed in Black/White format. Color image will be in
YCbCr422 format.

IV4_Save_As_BW
The image should be compressed in Black/White format, no
matter what the original image format is.

IV4_Save_As_YUV
The image should be compressed in YCbCr422 format, no matter
what the original image format is.

If necessary, the color space conversion is applied automatically. This is
detailed in the following table.

Function References - 3.35

JPEG Software Development Kit User’ Guide Version 2.0

CompressMethod
Specifies the compression method which can be one of the following
pre-defined macros:

IV4_JPEG_LOSSY
Uses the JPEG Baseline Compression.

IV4_JPEG_LOSSLESS
Uses the JPEG Lossless Compression.

QualityFactor
Specifies a Quality Factor, which ranges from 1 to 255, when
IV4_JPEG_LOSSY is used.

When IV4_JPEG_LOSSLESS is used. it selects one of the predictors, to be
used in compression. The valid value is from 1 to 7.

Comments
Pointer to a byte buffer that contains application related information, such as
comment, time stamp, etc. The contents in the buffer will be copied to the
compressed file using a JPEG Comment Marker. The user can retrieve this
information by calling either the MTInquireJPGVals () or the
IV4JPEGLoad().

cLength
Specifies the length of the information in bytes. If the contents is longer than
cLength, the extra part will be dropped. The user must ensure that the
cLength is not longer than the size of the Comments buffer.

RETURN VALUE IV4_OK

The function completed successfully.

IV4_ERROR

The board has not been initialized.

flag IV-4XX On-Board
Format

Compressed For-
mat

IV4_Save_As_Is B/W (Cb=Cr=0x80) 8 bit Black/White

IV4_Save_As_Is Color,
16 bit YCbCr422

16 bit YCbCr422

IV4_Save_As_BW B/W (Cb=Cr=0x80)
or Color (16 bit
YCbCr422)

8 bit B/W

IV4_Save_As_YUV B/W (Cb=Cr=0x80)
or Color (16 bit
YCbCr422)

16 bit YCbCr422

3.36 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

IV4_NOT_SUPPORTED

The IV-4XX SDK could not find the MuTech JPEG SDK DLL file. This error
code is for Windows (3.1x, 9x, NT) only.

IV4_PARAM_ERR

Indicates one of the following cases:

� sx > the width of the IV-4XX Video Frame

� sy > the height of the IV-4XX Video Frame

� name does not have an extension of JPG

� invalid flag.

COMMENTS For lossy (baseline) compression, Quality Factor is used to control the
compressed image quality. The higher the Quality Factor, the better the
compressed image quality and the lower the compression ratio, and vice
versa. To adjust the compression ratio and compressed image quality, MuTech
recommends using 128 as the Quality Factor to start value. Usually this value
will generate acceptable results for both compression ratio and compressed
image quality. The user may experiment with different settings and choose the
best one.

For lossless compression, a Predictor Number is used. For details about the
definition for the Predictor Number, refer to Appendix C.

SEE ALSO IV4SetVideoFrame(), IV4JPEGLoad()

EXAMPLE UWORD DefaultSx, DefaultSy;
// this example grab an single frame into the
// Video Frame and compress and save to a .JPG file
.
// open and initialize the board
.
.
// set to use NTSC camera
IV4SetTVStandard(IV4_Camera_NTSC);

// the default sx, sy may vary among different
// TV standards and also among different cameras
DefaultSx = 0x0033;
DefaultSy = 0x000A;

// set grab window to grab frame with odd field
// as first field
IV4SetGrabWindow(IV4_Frame_Mode | IV4_Grab_Odd,

 DefaultSx, DefaultSy,
 IV4_NTSC_Width_Default,// 640
 IV4_NTSC_Height_Default);// 480

// set the Video Frame
IV4SetVideoFrame(IV4_Single_Image, 0, 0,

 IV4_NTSC_Width_Default,// 640
 IV4_NTSC_Height_Default);// 480

Function References - 3.37

JPEG Software Development Kit User’ Guide Version 2.0

// grab one frame into the Video Frame
IV4StartGrab(IV4_Single_Grab);

// the following call will save an image from
// the Video Frame to a .JPG file
IV4JPEGSave(“image.jpg”, 0, 0,

 IV4_NTSC_Width_Default,// 640
 IV4_NTSC_Height_Default,// 480
 IV4_Save_As_Is,
 IV4_JPEG_LOSSY,
 128, NULL, 0);

.

.

3.2.1.3 IV4InquireJPEGVals

SYNOPSIS #include “iv4.h”
int MTPROCALL IV4InquireJPEGVals(char *name,

UWORD *dx, UWORD *dy,
UWORD *fmt,
BYTE FAR *Comments,
UWORD FAR *cLength);

DESCRIPTION Inquires the image size and format in a specified JPG file.

PARAMETERS name
specifies the file name. The file name can contain a path and must have an
extension of JPG.

Õ dx, dy
pointer to UWORD variables that return the size of the image in terms of
pixels and lines in the JPG file.

Õ fmt
pointer to an UWORD variable that returns the color depth of the image in
JPG file. The possible values returned can be 8, or 16 (bits).

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the
Comments field will be discarded. The user can also retrieve the comment
information by calling MTInquireJPGVals () function.

3.38 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of
the variable must be equal to the size of the Comments buffer. If
there is no Comment Marker found, the return value will be 0.
Otherwise, this function will copy the comment field into the buffer
pointed by Comments, and return the actual length of the comment
field in the variable pointed to.

RETURN VALUE IV4_OK

The function completed successfully.

IV4_ERROR

The board has not been initialized.

IV4_PARAM_ERR

name does not have an extension name of JPG,

COMMENTS The application can call this function to get the image size and the data format
about the JPG file and then set the Video Frame accordingly before calling to
IV4JPEGLoad().

In general, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call this function to find out the
information about the comment field, then allocate the buffer of the right size
and retrieve the comment field during the IV4JPEGLoad() function call.
The second way is to blindly allocate a buffer which is large enough to hold
the maximum anticipated size of the comment field, then calls this function to
get the information needed. When one of the decompression function is
called, using the NULL pointer option to disregard the comment field.

SEE ALSO IV4SetVideoFrame(), IV4JPEGLoad()

EXAMPLE See the example for IV4JPEGLoad().

Function References - 3.39

JPEG Software Development Kit User’ Guide Version 2.0

3.3 Miscllaneous Utility Group

Functions in this group provide a variety of color space conversion or file
information inquiry capability.

3.3.1 MTRGB24BitToYCbCr422

SYNOPSIS #include “mtjpeg.h”
void MTPROCALL MTRGB24BitToYCbCr422(

void HUGE *input, void HUGE *output,
ULONG length, UWORD RGBOrder,
UWORD SubSample);

DESCRIPTION Converts a stream of RGB data to a stream of YCbCr422 (YUYV) data.

PARAMETERS input
Pointer to the input buffer which contains the RGB data to be converted. The
length of the input buffer must be at least 3 times the number of pixels (length
* 3). The data sequence of the input buffer is defined by the RGBOrder
parmeter.

Õ output
Pointer to the output buffer which is used to store the resulte of the
conversion. The length of the output buffer must be at least 2 times the
number of pixels (length * 2). The data format of the output buffer is
YCbCr422 (YUYV), where each unit corresponds to each pair of RGB pixels.

length
Specifies the number of pixels to be converted. The length must be even
number.

RGBOrder
Specifies the order of the RGB data strored in the input buffer. When
RGBOrder is 1, the input data format is RGBRGB..., when RGBOrder is 0,
the input data format is BGRBGR....

SubSample
Reserved and must be set to 0.

RETURN VALUE None

COMMENTS Also see comments for JPEG_Memory2File_Compress().

SEE ALSO MTYCbCr422ToRGB24Bit()
JPEG_Memory2File_Compress()

3.40 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

3.3.2 MTYCbCr422ToRGB24Bit

SYNOPSIS #include “mtjpeg.h”
void MTPROCALL MTYCbCr422ToRGB24Bit(

void HUGE *input, void HUGE *output,
ULONG length, UWORD RGBOrder,
UWORD SubSample);

DESCRIPTION Converts a stream of YCbCr data to a stream of RGB data.

PARAMETERS input
Pointer to the input buffer which contains the YCbCr data to be converted.
The length of the input buffer must be at least 2 times the number of pixels
(length * 2). The data is YCbCr422 (YUYV), where each unit corresponds to
each pair of RGB pixels.

Õ output
Pointer to the output buffer which is used to store the results of the
conversion.The length of the output buffer must be at least 3 times the number
of pixels (length * 3). The data sequence of the output buffer is defined by the
RGBOrder parmeter.

length
Specifies the number of pixels to be converted. The length must be even
number.

RGBOrder
Specifies the order of the RGB data strored in the output buffer. When
RGBOrder is 1, the output data format is RGBRGB..., when RGBOrder is
0, the output data format is BGRBGR....

SubSample
Reserved and must be set to 0.

RETURN VALUE None

COMMENTS Also see comments for JPEG_File2Memory_Decompress()

SEE ALSO MTRGB24BitToYCbCr422(),
JPEG_File2Memory_Decompress()

EXAMPLE See example for MTRGB24BitToYCbCr422 ().

Function References - 3.41

JPEG Software Development Kit User’ Guide Version 2.0

3.3.3 MTRGB32BitToYCbCr422

SYNOPSIS #include “mtjpeg.h”
void MTPROCALL MTRGB32BitToYCbCr422(

void HUGE *input, void HUGE *output,
ULONG length, UWORD RGBOrder,
UWORD SubSample);

DESCRIPTION Converts a stream of RGB data to a stream of YCbCr422 (YUYV) data.

PARAMETERS input
Pointer to the input buffer which contains RGB data to be converted. The
length of the input buffer must be at least 4 times the number of pixels (length
* 4). The data sequence of the input buffer is defined by the RGBOrder
parmeter.

Õ output
Pointer to the output buffer which is used to store YCbCr. The length of the
output buffer must be at least 2 times the number of pixels (length * 2). The
data format of the output buffer is YCbCr422 (YUYV), where each unit
corresponds to each pair of RGB pixels.

length
Specifies the number of pixels to be converted. The length must be even
number.

RGBOrder
Specifies the order of the RGB data strored in the input buffer. When
RGBOrder is 1, the input data format is RGBXRGBX..., when RGBOrder
is 0, the input data format is BGRXBGRX..., where X is the byte discarded in
the conversion.

SubSample
Reserved and must be set to 0.

RETURN VALUE None

COMMENTS Also see comments for JPEG_Memory2File_Compress().

SEE ALSO MTYCbCr422RGB32Bit(), JPEG_Memory2File_Compress()

3.42 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

3.3.4 MTYCbCr422ToRGB32Bit

SYNOPSIS #include “mtjpeg.h”
void MTPROCALL MTYCbCr422ToRGB32Bit(

void HUGE *input, void HUGE *output,
ULONG length, UWORD RGBOrder,
UWORD SubSample);

DESCRIPTION Converts a stream of YCbCr data to a stream of RGB data.

PARAMETERS input
Pointer to the input buffer which contains YCbCr data to be converted. The
length of the input buffer must be at least 2 times the number of pixels (length
* 2). The data format of the input buffer is YCbCr422 (YUYV), where each
unit corresponds to each pair of RGB pixels.

Õ output
Pointer to the output buffer which is used to store the results of the
conversion.The length of the output buffer must be at least 4 times the number
of pixels (length * 4). The data sequence of the output buffer is defined by the
RGBOrder parmeter.

length
Specifies the number of pixels to be converted. The length must be even
number.

RGBOrder
Specifies the order of the RGB data strored in the output buffer. When
RGBOrder is 1, the output data format is RGBXRGBX..., when RGBOrder
is 0, the output data format is BGRXBGRX..., where X is the byte discarded
in the conversion.

SubSample
Reserved and must be set to 0.

RETURN VALUE None

COMMENTS Also see comments for JPEG_File2Memory_Decompress()

SEE ALSO MTRGB32BitToYCbCr422(), JPEG_File2Memory_Decompress()

Function References - 3.43

JPEG Software Development Kit User’ Guide Version 2.0

3.3.5 MTInquireJPGVals

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL MTInquireJPGVals(char FAR *file,

UWORD FAR *dx, UWORD FAR *dy,
UWORD FAR *fmt,
BYTE FAR *Comments, UWORD FAR *cLength);

DESCRIPTION Inquires the image size and format in a specified JPG file.

PARAMETERS file
Specifies the file name. The file name can contain a path and must have an
extension of JPG.

Õ dx, dy
Pointer to UWORD variables that return the size of the image in terms of
pixels and lines in the JPG file.

Õ fmt
Pointer to an UWORD variable that returns the image type. The possible
values returned are 0 for color image (YCbCr422), or 1 for Black/White
image (8 bit B/W).

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the Comments
field will be discarded. The user can also retrieve the comment information by
using any one of the decompression functions that decompresses from a JPG
file.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

3.44 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of the
variable must be equal to the size of the Comments buffer. If there is
no Comment Marker found, the return value will be 0. Otherwise, this
function will copy the comment field into the buffer pointed by
Comments, and return the actual length of the comment field in the
variable pointed to.

RETURN VALUE OK

The function completed successfully.

PARAM_ERR

file does not have an extension of JPG,

COMMENTS The application calls this function to get the image size and the data format of
the JPG file. It is helpful that the application knows the information before
further operates on the file.

In general, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call this function to find out the
information about the comment field, then allocate the buffer of the right size
and retrieve the comment field during the decompression function call. The
second way is to blindly allocate a buffer which is large enough to hold the
maximum anticipated size of the comment field, then calls this function to get
the information needed. When one of the decompression function is called,
using the NULL pointer option to disregard the comment field.

SEE ALSO JPEG_Memory2File_Compress()

EXAMPLE See the example for JPEG_Memory2File_Compress().

3.3.6 MTInquireJPGInMemoryVals

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL MTInquireJPGInMemoryVals(

BYTE HUGE *jpegBuffer, ULONG bufferLength,
UWORD FAR *dx, UWORD FAR *dy, UWORD FAR *fmt,
BYTE FAR *Comments, UWORD FAR *cLength);

DESCRIPTION Inquires the image size and format of compressed data in a specified memory
buffer in JPG file format.

PARAMETERS jpegBuffer
Pointer to a BYTE buffer that will be used to store the compressed data in
JPG format.

bufferLength

Function References - 3.45

JPEG Software Development Kit User’ Guide Version 2.0

Specifies the length of the jpegBuffer. The bufferLength defines the byte
number of the code in the buffer. It usually has a value returned from provious
call to a comprssion function that is using the memory buffer to hold the
compressed code stream.

Õ dx, dy
Pointer to UWORD variables that return the size of the image in in terms of
pixels and lines in the memory buffer in JPG format.

Õ fmt
Pointer to an UWORD variable that returns the image type. The possible
values returned are 0 for color image (YCbCr422), or 1 for Black/White
image (8 bit B/W).

Õ Comments
Pointer to a byte buffer that will be used to hold the JPEG comment
information if one exists in the compressed code stream. A NULL pointer
could be used if the user has no interest of the comment content at the time of
calling. If a buffer pointer is specified, its length must be specified by
cLength, see below for detailed description. It is the caller’s responsibility to
allocate enough space for the buffer, otherwise the extra part of the Comments
field will be discarded. The user can also retrieve the comment information by
using any one of the decompression functions that decompresses from a
memory buffer in JPG file format.

Õ cLength
Pointer to an UWORD variable that can be used in a number of ways
described below:

� points to NULL - the user is not interested in any information in the
comment field. The function will not look for Comment Marker and
totally ignore the Comments buffer.

� points to a variable with the value 0 - The user is interested in only the
length of the comment field. If there is no Comment Marker found,
the return value will be 0 (unchanged). Otherwise, this function will
return the actual length of the comment field in the variable pointed
to. The Comments buffer will be ignored.

� points to a variable with non-zero value - The user is interested in
both the length and the content of the comment field. In this case, the
Comments buffer must be allocated and supplied, and the value of the
variable must be equal to the size of the Comments buffer. If there is
no Comment Marker found, the return value will be 0. Otherwise, this
function will copy the comment field into the buffer pointed by
Comments, and return the actual length of the comment field in the
variable pointed to.

RETURN VALUE OK

The function completed successfully.

3.46 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

PARAM_ERR

jpegBuffer is NULL.

COMMENTS The application calls this function to get the image size and the data format in
a memory buffer in JPG file format. It is helpful that the application knows
the information before further operates on the memory buffer.

In General, there two ways that the application can retrieve the comment field
from a compressed code stream. The first is to call this function to find out the
information about the comment field, then allocate the buffer of the right size
and retrieve the comment field during the decompression function call. The
second way is to blindly allocate a buffer which is large enough to hold the
maximum anticipated size of the comment field, then calls this function to get
the information needed. When one of the decompression function is called,
using the NULL pointer option to disregard the comment field.

SEE ALSO JPEG_Memory2Memory_Compress(),
JPEG_File2Memory_Compress()

EXAMPLE See the example for JPEG_Memory2Memory_Compress().

3.3.7 MTInquireBMPVals

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL MTInquireBMPVals(BYTE FAR *file,

UWORD FAR *dx, UWORD FAR *dy,
UWORD FAR *fmt);

DESCRIPTION Inquires the image size and format in a specified BMP file.

PARAMETERS file
Specifies the file name. The file name can contain a path and must have an
extension of BMP.

Õ dx, dy
Pointer to UWORD variables that return the size of the image in terms of
pixels and lines in the BMP file.

Õ fmt
Pointer to an UWORD variable that returns the color depth of the image in the
BMP file. The possible values returned are 8, or 24 (bits).

RETURN VALUE OK

The function completed successfully.

PARAM_ERR

file does not have an extension of BMP,

Function References - 3.47

JPEG Software Development Kit User’ Guide Version 2.0

COMMENTS The application can call this function to get the image size and the data format
about the BMP file. It is helpful that the application need to knows the
information before further operates on that file.

SEE ALSO JPEG_File2Memory_Compress()

EXAMPLE See the example for JPEG_File2Memory_Compress().

3.3.8 MTInquireTGAVals

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL MTInquireTGAVals(BYTE FAR *file,

UWORD FAR *dx, UWORD FAR *dy,
UWORD FAR *fmt);

DESCRIPTION Inquires the image size and format in a specified TGA file.

PARAMETERS file
Specifies the file name. The file name can contain a path and must have an
extension of TGA.

Õ dx, dy
Pointer to UWORD variables that return the size of the image in terms of
pixels and lines in the TGA file.

Õ fmt
Pointer to an UWORD variable that returns the color depth of the image in the
TGA file. The possible values returned are 8, or 24 (bits).

RETURN VALUE OK

The function completed successfully.

PARAM_ERR

file does not have an extension name of TGA,

COMMENTS The application can call this function to get the image size and the data format
about the TGA file. It is helpful that the application knows the information
before further operates on that file.

SEE ALSO JPEG_File2Memory_Compress()

EXAMPLE See the example for JPEG_File2Memory_Compress().

3.48 - Function References

Version 2.0 JPEG Software Development Kit User’ Guide

3.3.9 MTInquireTIFFVals

SYNOPSIS #include “mtjpeg.h”
int MTPROCALL MTInquireTIFFVals(BYTE FAR *file,

UWORD FAR *dx, UWORD FAR *dy,
UWORD FAR *fmt);

DESCRIPTION Inquires the image size and format in a specified TIF file.

PARAMETERS file
Specifies the file name. The file name can contain a path and must have an
extension of TIF.

Õ dx, dy
Pointer to UWORD variables that return the size of the image in terms of
pixels and lines in the TIF file.

Õ fmt
Pointer to an UWORD variable that returns the color depth of the image in the
TIF file. The possible values returned are 8, 16, or 24 (bits).

RETURN VALUE OK

The function completed successfully.

PARAM_ERR

file does not have an extension of TIF,

COMMENTS The application can call this function to get the image size and the data format
about the TIF file. It is helpful that the application knows the information
before further operates on that file.

SEE ALSO JPEG_File2Memory_Compress()

EXAMPLE See the example for JPEG_File2Memory_Compress().

Glossary - A.1

JPEG Software Development Kit User’s Guide Version 2.0

Appendix A: Glossary
compression Reduction in the number of bits used to represent source image data.

compression data Either compressed image data or table specification or both.

DCT coefficient The amplitude of the specific cosine basis function.

decode A process which takes the input compressed image data and outputs a contin-
uous tone image.

dequantization The inverse procedure to quantization by which the decoding process recovers
a representation of the DCT coefficients.

discrete
cosinetransform;

DCT

Either the forward discrete cosine transform or the inverse discrete cosine
transform.

Huffman decoding An entropy decoding procedure which recovers the symbol from each variable
length code produced by the Huffman encoder.

Huffman encoding An entropy encoding procedure which assigns a variable length code to each
input symbol.

Huffman table The set of variable length codes required for Huffman encoding and Huffman
decoding.

JPEG The Joint Photographic Experts Group. This group is a joint ISO/CCITT tech-
nical committee (ISO/IEC JTC1/SC2/WG10, Photographic Image Coding)
whose goal has been to develop a general-purpose international standard for
gray scale or true color compression.

lossless A term for encoding and decoding processes and procedures in which the out-
put of the decoding procedure(s) is identical to the input to the encoding pro-
cedure(s).

lossy A term for encoding and decoding processes which are not lossless.

A.2 - Glossary

Version 2.0 JPEG Software Development Kit User’s Guide

predictor A linear combination of previously encoded reconstructed values (uses in loss-
less mode coding).

quantization The procedure by which the DCT coefficients are linearly scaled in order to
achieve better compression.

(8x8)block An 8x8 array of samples.

SubSampling A procedure by which the spatial resolution of an image is reduced.

Overview of the JPEG Still Picture Compression Algorithm - B.1

JPEG Software Development Kit User’s Guide Version 2.0

Appendix B: Overview of the
JPEG Still Picture
Compression Algorithm

By Gregory K. Wallace
Digital Equipment Corporation
Maynard, Massachusetts

B.1 Introduction

For the past few years, a standardization effort known by the acronym JPEG,
for Joint Photographic Experts Group, has been working toward establishing
the first international digital image compression standard for between CCITT
and ISO, JPEG convenes officially as the ISO committee with nomenclature
JTC1/SC2/WG10, but operates in close collaboration with CCITT SGVIII.

The only widely used international digital image compression standard in ex-
istence today is the bi-level compression method used by Group 3 and Group
4 facsimile machines. This method differs from the methods being standard-
ized by the JPEG committee in a number of important ways. For one, the JPEG
methods are applicable only to multi-level images and not at all to bi-level im-
ages--just the opposite of the existing fax methods. Moreover, the JPEG stan-
dard aims to be a general-purpose technique for applications as diverse as
photo-videotex, desktop publishing, graphic arts, color facsimile, newspaper
wire photo transmission, medical systems, and many others. The Group 3/4
compression methods, however, were standardized expressly for fax machines
(though they are being adopted for other applications as well).

As was the case for commonplace facsimile before the Group 3 standards were
established, each of these continuous-tone imaging applications needs its own
image compression standard in order to flourish, so that equipment from dif-

B.2 - Overview of the JPEG Still Picture Compression Algorithm

Version 2.0 JPEG Software Development Kit User’s Guide

ferent manufacturers will interoperate. But the JPEG committee has a strong
additional conviction that most of these applications can be satisfied by a com-
mon general-purpose image compression standard. This would facilitate ex-
change of images across application boundaries as these applications become
increasingly internetworked. Moreover, state-of-the-art methods for continu-
ous-tone image compression often require VLSI implementation to achieve the
coding or decoding speed required by many applications--a common gener-
al-purpose method would promise to reduce significantly the cost of special-
ized compression hardware.

The price of this aim for application independence is a proposed standard
which has been fairly long in the making, and which on first blush appears
somewhat complex by virtue of its multiple modes of operation. It does, how-
ever, feature a core mode known as the Baseline System, which is common to
all other modes of operation, and which is expected to be sufficient in its own
right for a number of applications.

B.2 Algorithm Requirements and Selection
Process

The JPEG committee’s goal has been to develop a method for continuous-tone
image compression which meets the following requirements:

(a) Be at or near state of the art with regard to compression rate and ac-
companying image fidelity, over a wide range of image quality ratings, and es-
pecially in the range where visual fidelity to the original is characterized as
“very good” to “excellent” to indistinguishable”.

(b) Be applicable to practically any kind of scene content--not be limited,
for example, to classes of imagery with restrictions on scene complexity, range
of colors, statistical properties, etc.;

(c) Have tractable computational complexity (with some preference given
to the decoding side), to yield software implementations with viable perfor-
mance on a range of CPUs, as well as hardware implementation with viable
cost for applications requiring high performance;

(d) Have the following modes of operation:

� Sequential build-up; each component of the image is encoded in a sin-
gle left-to-right, top-to-bottom scan;

� Progressive build-up; the image is encoded in multiple scans for appli-
cations in which transmission time is long, and the user prefers to
watch the image build up in multiple coarse to clear passes;

� Hierarchical encoding: the image is encoded at multiple resolutions, so
that lower-resolution versions may be accessed without having first to
decompress the image’s full resolution.

Overview of the JPEG Still Picture Compression Algorithm - B.3

JPEG Software Development Kit User’s Guide Version 2.0

� Lossless compression: an encoding which will guarantee exact recov-
ery of every source image pixel value, in spite of relatively poor (com-
pared to lossy with excellent fidelity) compression rate.

In June 1987, JPEG conducted a selection process based on a blind assessment
of subjective picture quality, and narrowed 12 proposed algorithms to three.
Three informal working groups formed to refine them, and in January 1988, a
second, similar selection process revealed that the “ADCT” proposal, based on
the 8x8 Discrete Cosine Transform (DCT), had produced the best picture qual-
ity. Since then, an intensive, group-wide effort to refine, test, and document
the DCT-based algorithm, in all its modes of operation, has been underway.
Details of this selection and evaluation process, as well has history of the JPEG
committee, are contained in {1,2,3,4}.

The requirement for a lossless mode of operation proved to be the most diffi-
cult one to satisfy with a DCT based algorithm. For some time, JPEG consid-
ered the approach whereby the encoder would reconstruct the same
compressed data sent to the decoder, form the difference of the reconstructed
and source images, and send the difference image to the decoder. But this
method does not guarantee a lossless result unless both encoder and decoder
use identical Inverse DCT (DCT) implementations.

The JPEG committee was reluctant to specify some unique IDCT as a require-
ment in its proposed standard, because research into new fast-DCT trans-
formed algorithm continues, and no one algorithm is optimal for all
implementations. Instead the committee chose to specify a simple predictive
method, which is entirely separate and independent from the DCT based algo-
rithm. This method uses a 3-pixel predictor, with a lossless encoding of the
prediction error.

B.3 Basic DCT Block Diagram

Common to all encoding modes of the DCT-based algorithm are the compo-
nents shown in Figure B-1, which illustrates the key processing steps applied
to each 8x8 block of samples from a single component of a source image. (The
encoder must extend the right and bottom edges of the image component, so
that it will consist of an integral number of blocks. The actual dimensions of
the image are encoded in the header, and the decoder in turn discards the ex-
tensions).

B.4 - Overview of the JPEG Still Picture Compression Algorithm

Version 2.0 JPEG Software Development Kit User’s Guide

Figure 2-1: DCT Based Encoder Functional Blocks

The 64 image samples are the first transformed into 64 DCT coefficients by the
Forward DCT (FDCT). The DCT is a relative of the Discrete Fourier Trans-
form, and the FDCT may be regarded intuitively as a harmonic analyzer which
decomposes each 8x8 block of pixels into a set of 64 two-dimensional (2D)
spatial frequencies, each with a vertical and horizontal component. The coef-
ficient values may then be regarded as a measure of the amount of each 2D fre-
quency present in the 8x8 pixel block. The coefficient with zero frequency in
both dimensions is known as the DC coefficient and the other 63 are known as
the AC coefficients.

Each of the 64 DCT coefficients is next uniformly quantized in conjunction
with a 64-element Quantization Table (Q-Table), which must be specified as
an input to the encoder. Each element may be specified as any integer value
from 1 to 255, and represents the quantizer step size for the corresponding DCT
coefficient. Quantization is performed by dividing each DCT coefficient by its
corresponding Q-Table element and rounding to the nearest integer. Ideally,
each stepsize should be chosen by the application as the perceptual threshold
for the visual contribution of its corresponding cosine basis function, as a func-
tion of the intended source image format, display characteristics, and viewing
distance.

The degree of precision required to perform these computations depends on the
range of the input pixels. A property of the 8x8 FDCT is that the non-fractional
part of the DCT coefficients has a range which is a factor of 8 greater than that
of the input pixels. Given that the minimum quantizer step size is one integer
level, the quantized DCT coefficients increase in size by three bits compared
to the input pixels, and greater precision than this is required to compute the
FDCT itself with adequate accuracy. The JPEG committee has chosen to allow
either 8 bit or 12 bit per component input pixel samples, knowing that the high-
er precision will require higher cost computation, but will accommodate addi-
tional applications.

After quantization, the DC coefficient is treated separately from the 63 AC co-
efficients. Because there is typically strong correlation between the DC com-

Overview of the JPEG Still Picture Compression Algorithm - B.5

JPEG Software Development Kit User’s Guide Version 2.0

ponents of adjacent 8x8 blocks, the quantized DC term is represented by
encoding its difference from the DC term of the previous block. The special
treatment is worthwhile, as the DC terms typically contain a significant frac-
tion of the total image energy.

Entropy coding is the final processing step. Whereas compression is achieved
in the quantization step by discarding data which is not visually significant, en-
tropy coding achieves additional compression without additional loss, by en-
coding the data more compactly based on its statistical characteristics. Except
for the Baseline System, in which only Huffman coding is allowed, either
Huffman coding or Arithmetic coding may be used as the entropy coding
method for all DCT-based modes of operation.

Huffman coding {4} requires use of one or more sets of Huffman code tables.
A set consists of one table for the DC coefficients and one table for the AC co-
efficients. Each image component may use only one set of Huffman tables,
though not all components must use the same set. Huffman tables may be pre-
defined and used by an application as defaults, or computed specifically for the
image in an initial statistics-gathering pass. Such choices are the business of
specific applications, and outside the domain of the JPEG standard which spec-
ifies no default Huffman (or quantization) tables.

In contrast, Arithmetic coding {5} requires no tables to be externally input, be-
cause it adapts to the image statistics as it encodes the image in a single pass.
Furthermore, Arithmetic coding has produced 5-10% better compression than
Huffman for many of the images which the JPEG committee has tested. How-
ever, it is somewhat more complex than Huffman coding, and may be less fea-
sible than Huffman for the highest speed hardware implementations.

For color images with moderately complex scenes, all DCT-based modes of
operation typically produce the following levels of picture quality for the indi-
cated ranges of compression. These levels are only a guideline - quality and
compression can vary dramatically according to source image characteristics
and scene content:

� 0.25-0.5 bits/pixel: moderate to good quality, sufficient for some ap-
plications;

� 0.5-0.75 bits/.pixel: good to very good quality, sufficient for many ap-
plications;

� 0.75-1.5 bits/pixel: excellent quality, sufficient for most applications.

� 1.5-2.0 bits/pixel: usually indistinguishable from the originals, suffi-
cient for the most demanding applications.

The lossless procedures tend to produce about 2:1 compression for color imag-
es with moderately complex scenes.

B.6 - Overview of the JPEG Still Picture Compression Algorithm

Version 2.0 JPEG Software Development Kit User’s Guide

B.4 Source Images and Data Interleaving

The previous section described how a single component of an image is decom-
posed into 8x8 blocks and then transformed, quantized, and coded for the
DCT-based modes of operation. While some images (“grayscale” or “mono-
chrome” images) consist only of a single component, the JPEG standard is de-
signed to handle also the more general class of multiple-component images,
which includes all varieties of color images, and the other types as well.

A multiple-component image maybe compressed in either interleaved or
non-interleaved order. In the latter case, each image component is compressed
in its entirety and output as part of the compressed datastream before starting
the next component. In the interleaved case, 8x8 blocks from each component
are processed in round-robin fashion, and compressed blocks are output in in-
terleaved order into the compressed stream. The case of a three-component
image being encoded in interleaved order is shown in Figure B-2. (For sim-
plicity, only one set of tables is shown.) Only one table can be assigned to each
component, so the encoder must switch to the appropriate table as it switches
between source image components. Whether interleaved or non-interleaved,
all DCT-based algorithms encode each image component independently of all
others.

Figure 2-1: Componen Interleave and Table-Switching

Because the JPEG standard handles multiple-component images in this general
way, it is applicable to images represented in practically any color system. In-
deed, there exist many different color systems, new ones are still being invent-
ed in current research, and many are the subject of ongoing standardization
efforts which are independent of JPEG’s work. Consequently, the compressed
image header in the JPEG standard does not contain any parameter which in-
dicates the color space of the compressed image. To JPEG, such information
is specific to the application, and not required to decompress the image.

The source image may also have one or more components that are subsampled
with respect to its others, though there are restrictions on this flexibility.

Overview of the JPEG Still Picture Compression Algorithm - B.7

JPEG Software Development Kit User’s Guide Version 2.0

B.5 Sequential Build-up and Baseline System

Sequential build-up refers to the encoding mode in which 8x8 pixel blocks are
compressed and output from left to right and top to bottom, in a single scan per
component. If the image components may be interleaved, in order to limited
to four each the number of Q-tables and sets of Huffman tables (or, if Arith-
metic coding is employed, the number of statistics areas) which must be stored
in the decoder.

Baseline System {4} is the name given to a restricted version of the sequential
build-u-mode of DCT compression. It is required to be present in all
DCT-based modes of operation, in order to provide a “fall-back” or default
mode for applications like facsimile, in which sender and receiver can negoti-
ate a set of common features prior to image encoding and transmission. But,
the Baseline System is also expected to be sufficient for many applications in
its own right. Its restrictions with respect to general sequential operation are:

(a) Operates on images with 8-bits/pixels/component only;

(b) Uses Huffman coding only;

(c) Uses at most two sets of Huffman tables per scan.

These restrictions are aimed at reducing the cost of the codec: (a) reduces the
computation cost of the FDCT and IDCT as described in section 3, (b) reduces
the options available for entropy coding, and (c) reduces the storage cost re-
quired at the decoder.

B.6 Progressive Build-up

The mode of operation known as progressive build-up {6} is in many ways
identical to sequential build-up. The difference is that each image component
is encoded as multiple scans rather than as a single scan. In this mode, a rough
but recognizable version of the image appears quickly (in comparison to the to-
tal transmission time) at the viewer’s screen, and is refined by successive scans
until reaching the level of picture quality that was established by the quantiza-
tion tables.

Referring to Figure 1, the progressive build-up mode of operation can be un-
derstood by imagining the addition of a full image buffer memory at the output
of the quantizer, before the input to the entropy coder. The buffer memory must
be of sufficient size to store the image as quantized DCT coefficients, each of
which is 3 bits large than the per-component input pixels.

In progressive build-up, after each block of DCT coefficients is quantized, it is
stored in the coefficient buffer memory, because only a portion of its content
is encoded and output at each scan through the image. This contrasts with se-
quential build-up, where all coefficients in a block are quantized and then im-

B.8 - Overview of the JPEG Still Picture Compression Algorithm

Version 2.0 JPEG Software Development Kit User’s Guide

mediately entropy-coded and output at their full (quantized) resolution,
without buffering.

There are two independent ways by which the quantized coefficients of each
block may be partially encoded within a scan. First, only a specified “band”
i.e. only some of the 64 coeffiients need be encoded. This mode is called spec-
tral selection, because each band typically contains coefficients which occupy
a lower or higher part of the spatial-frequency “spectrum” for that 8x8 block.
Secondly, the coefficients within the current band need not be encoded to their
full (quantized) accuracy within each scan. Upon a coefficient’s first encod-
ing, the N most significant bits can be encoded first, where N is specifiable. In
one or more subsequent refinement scans, the bits of less significance can then
be encoded. This second mode is called successive approximation.

B.7 Hierarchical Encoding

The hierarchical mode {2} provides a “pyramidal” encoding of an image at
multiple resolutions, each differing in resolution from its adjacent encoding by
a factor of two in either the horizontal or vertical dimension or both. The en-
coding procedure can be summarized as follows:

(a) Filter and down-sample the original image by the desired number of
multiples of 2 in each dimension.

(b) Encode this reduced-size image using either the sequential or progres-
sive build-up methods previously described.

(c) Decode this reduced-size image and then interpolate and up-sample it
by 2 horizontally and/or vertically, using the identical interpolation filter which
the receiver must use.

(d) Use this up-sampled image as a prediction of the original at this reso-
lution, and encode the difference image using either the sequential or progres-
sive encoding modes.

(e) Repeat steps (c) and (d) until the full resolution of the image has been
encoded.

Hierarchical encoding is useful in applications in which a very high resolution
image must be accessed by a lower-resolution device, which does not have the
buffer capacity to reconstruct the image at its full resolution and then scale it
down for the lower-resolution display. An example scanned and compressed
at high resolution for a very high-quality printer, where the image must also be
displayed on a low-resolution PC video screen.

Overview of the JPEG Still Picture Compression Algorithm - B.9

JPEG Software Development Kit User’s Guide Version 2.0

B.8 Standardization Schedule

The JPEG committee has completed revision 8 {7} of its technical specifica-
tion, the details of which are now quite stable. The sequential modes of oper-
ation have been validated by exchange of encoded data among committee
members, to verify that independently produced codecs operate compatibly.
This validation procedure is currently underway with the progressive, hierar-
chical, and lossless modes of operations as well. Unless an error is discovered,
the technical definition is considered to be frozen by the committee.

The technical specification is now being converted to the Committee Draft
(CD), which is the document in the official ISO standards format to be formally
balloted. The CD ballot is expected to commence before the end of 1990.
Upon successful completion of this ballot, expected before mid-1991, the Draft
International Standard (DIS) document will be balloted. Successful comple-
tion of the DIS phase will result in a final International Standard, which the
committee hopes to achieve before the end of 1991.

B.10 - Overview of the JPEG Still Picture Compression Algorithm

Version 2.0 JPEG Software Development Kit User’s Guide

Prediction - C.1

JPEG Software Development Kit User’s Guide Version 2.0

Appendix C: Prediction
Figure C-1 shows the relationship between the positions (a, b, c) of the recon-
structed neighboring samples used for prediction and the position of x, the
sample being coded.

Figure 3-1: Relationship between Sample & Prediction Samples

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed sam-
ples immediately to the left, immediately above, and diagonally to the left of
the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table C-1.

C.2 - Prediction

Version 2.0 JPEG Software Development Kit User’s Guide

Selections 1, 2, and 3 are one-dimensional predictors and selections 4, 5, 6, and
7 are two-dimenstional predictors The one-dimensional horizontal predictor
(prediction sample Ra) is used for the first line of samples at the start of the
scan and at the beginning of each restart interval. The selected predictor is
used for all other lines. The sample from the line above (prediction sample Rb)
is used at the start of each line, except for the first line. At the beginning of the
first line and at the beginning of each restart interval the prediction value of

2P-1 is used, where P is the input precision.

PREDICTOR
NUMBER

PREDICTION

0 No prediction

1 Px = Ra

2 Px = Rb

3 Px = Rc

4 Px = Ra + Rb - Rc

5 Px = Ra + ((Rb - Rx) / 2)

6 Px = Rb + ((Ra - Rc) / 2)

7 Px = (Ra + Rb) / 2

Table 0-1: Predictors for Lossless Coding

JPEG Software Development Kit User’s Guide Version 2.0

Index - 1

A
AC coefficient . 1.2, B.4
Arithmetic coding .B.5

B
baseline. 1.1, 1.3, 3.5, 3.16, 3.35, B.2, B.7
build-up

Progressive..B.7
Sequential..B.7

C
code stream . 1.1
code stream size . 3.3
color space conversion 1.2, 3.39
Comment Marker . 3.5, 3.7, 3.12, 3.15, 3.20, 3.24, 3.29,

3.32, 3.35, 3.38, 3.43–3.45
compressed code stream. 1.4, 3.9, 3.12
Compressed Data Format 3.5, 3.7, 3.15, 3.19, 3.21, 3.28
compression

method .. 3.4
parameter .. 3.4

compression mode
lossless ..1.1, 1.5, A.1, B.3
lossy .. 1.1, A.1

compression ratio . 3.36

D
Data Frame. 3.13–3.15, 3.18–3.19, 3.22, 3.27
DC coefficient . 1.2, B.4
DCT .1.1–1.2, A.1, B.3
DCT coefficient . A.1
Decompressed Data Format 3.7, 3.19
dequantization . A.1
Destination . 3.2
Differential Pulse Code Modulation 1.3
Discrete Cosine Transform . 1.2
DLL . 2.2

Windows 16 Bit ...2.2
Windows 32 Bit ...2.3

DPCM .1.3
Dynamic Link Library .2.2

E
Entropy coding . B.5

F
Forward DCT .1.2, B.4
Function

IV4InquireJPEGVals ...3.37
IV4JPEGLoad..3.30
IV4JPEGSave ..3.34
JPEG_File2File_Compress..................................3.4
JPEG_File2File_Decompress..............................3.6
JPEG_File2Memory_Compress3.8
JPEG_File2Memory_Decompress3.18
JPEG_InquireCodeStreamSize............................3.3
JPEG_InquireSDKVersion..................................3.2
JPEG_Memory2File_Compress3.13
JPEG_Memory2File_Decompress3.11
JPEG_Memory2Memory_Compress.................3.21
JPEG_Memory2Memory_Decompress.............3.27
MTInquireBMPVals..3.46
MTInquireJPGInMemoryVals...........................3.44
MTInquireJPGVals..3.43
MTInquireTGAVals ..3.47
MTInquireTIFFVals ..3.48
MTRGB24BitToYCbCr4223.39
MTRGB32BitToYCbCr4223.41
MTYCbCr422RGB32Bit...................................3.42
MTYCbCr422ToRGB24Bit3.40

G
Group

Application Level ..3.1

Index

Version 2.0 JPEG Software Development Kit User’s Guide

2 - Index

Developer Level.. 3.1
Miscellaneous Utility .. 3.1
Miscellanous Utility.. 3.1
MuTech Product Support.................................... 3.1

H
Hierarchical .B.8
Huffman code tables . 1.2
Huffman coding1.2–1.4, A.1, B.5
Huffman decoding . A.1
Huffman table .A.1, B.5

I
interleave .B.6
Inverse DCT. 1.3
IV-4XX SDK 2.1–2.3, 3.30, 3.32
IV-4XX Video Frame 3.30–3.31, 3.33–3.34

J
Joint Photographic Experts Group 1.1, A.1, B.1
JPEG. 1.1, B.2

L
Library

DOS 16 Bit.. 2.1
lossless . 1.1, 3.16, 3.35
lossy . 3.16

M
Microsoft Visual C/C++. 2.1–2.3

N
neighborhood prediction . 1.3
neighboring samples .C.1
non-interleave. .B.6

O
original image . 1.4

P
pixel format. 3.24, A.1, B.1, C.1
prediction difference .1.4
prediction error .1.3
predictor1.3–1.5, 3.5, 3.9, 3.15, 3.23, 3.36, A.2, B.3, C.1

one-dimensional..C.2

Q
Quality Factor . 1.1–1.3, 3.9, 3.15–3.16, 3.23–3.24, 3.36
Quantization .1.2, A.2
Quantization table .1.2, B.4

R
Region Of Interest. 3.14, 3.19, 3.22, 3.28
RGB 1.2, 3.2, 3.7, 3.16, 3.39–3.42
ROI . 3.14, 3.28

S
SDK

version ...3.2
Source .3.2
SubSampling. A.2

T
time stamp. .3.5

V
version number .3.2

W
WIN32 .2.3
Windows 9X .2.3
Windows NT. .2.3

Y
YCbCr. .1.2, 3.2, 3.42
YCbCr422. 3.5, 3.8, 3.14, 3.16, 3.19, 3.21, 3.31,

3.39–3.43
YUYV. .3.39

